At evéo, we believe that health and wellness should never be compromised by fads or trends. Here, you’ll find links to the clinical studies, peer-reviewed articles, and research papers that validate the ingredients in our products. We want you to feel confident in your choices, knowing that every supplement we design is grounded in science and created to provide measurable benefits to human health. Unlike many companies that rely on buzzwords and unproven claims, we’ve built our formulas with precision, ensuring that every ingredient we include is supported by research and used in the effective doses. Whether it’s promoting energy, supporting cognitive function, enhancing longevity, sports performance or improving overall wellness, our products are designed to deliver real results.
APEX Perform
APEX Perform
Ajuga Turkestanica and Cyanotis
arachnoidea / Plant Ecdysteroids
The
minor ecdysteroids from Ajuga turkestanica
https://examine.com/supplements/ecdysteroids/?form=MG0AV3&show_conditions=true
https://www.mdpi.com/2072-6643/16/9/1382?form=MG0AV3
https://www.mdpi.com/1422-0067/19/7/1885?form=MG0AV3
https://www.europeanreview.org/wp/wp-content/uploads/2584-2592.pdf
https://www.scirp.org/html/7-8801140_26159.htm
https://www.mdpi.com/2072-6643/16/9/1382
https://www.sciencedirect.com/science/article/abs/pii/B9780444634733000058
Tongkat Ali
https://www.mdpi.com/2076-3417/14/11/4372?form=MG0AV3
https://jissn.biomedcentral.com/articles/10.1186/1550-2783-10-28?form=MG0AV3
https://www.publish.csiro.au/hc/pdf/HC22143?form=MG0AV3
https://www.tandfonline.com/doi/full/10.1186/1550-2783-10-28
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.5017
https://www.sciencedirect.com/science/article/abs/pii/B9780128139226000631
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0272.2011.01168.x
https://www.mdpi.com/2076-3417/14/11/4372
https://www.sciencedirect.com/science/article/abs/pii/S0378512220304497
https://www.sciencedirect.com/science/article/abs/pii/B9780128155653000163
https://wyattandfreunde.com.au/blogs/news/tongkat-ali-health-benefits-dosage-and-precautions
https://greytopwarriors.com/tongkat-ali-the-natural-testosterone-booster-for-men-40/
Vitamin D
https://academic.oup.com/jbmr/article/35/5/883/7516653
https://www.bmj.com/content/326/7387/469?eaf
https://journals.sagepub.com/doi/abs/10.1177/0022034513495239
https://academic.oup.com/jcem/article-abstract/94/4/1214/2596299
https://journals.sagepub.com/doi/abs/10.1177/1941738112461621
https://academic.oup.com/jcem/article/102/11/4292/4096785
https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0030-1269854
https://www.sciencedirect.com/science/article/abs/pii/S0960076012002452
https://academic.oup.com/jcem/article-abstract/96/4/955/2720842
Vitamin K
Vitamin
K as a Diet Supplement with Impact in Human Health: Current Evidence
in Age-Related Diseases
https://academic.oup.com/nutritionreviews/article/80/4/677/6362591?form=MG0AV3
https://link.springer.com/article/10.1007/s40620-019-00685-0?form=MG0AV3
https://academic.oup.com/jcem/article-abstract/93/4/1217/2826351
https://www.sciencedirect.com/science/article/abs/pii/S0306987715000110
https://openheart.bmj.com/content/2/1/e000300
https://pmc.ncbi.nlm.nih.gov/articles/PMC5726210/
https://www.sciencedirect.com/science/article/abs/pii/S0083672907000167
https://www.tandfonline.com/doi/full/10.4161/19381972.2014.968490
ELEVATE Thermo Burn
ELEVATE Thermo Burn
Caralluma Fimbriata
Extract
vuir.vu.edu.au/33252/1/ASTELL
Katie - Thesis.pdf?form=MG0AV3
https://www.mdpi.com/2072-6643/16/24/4296?form=MG0AV3
https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/s12906-021-03450-8?form=MG0AV3
Curcumin Extract
Curcumin:
A Review of Its Effects on Human Health
Multiple
health benefits of curcumin and its therapeutic potential |
Environmental Science and Pollution Research
Curcumin:
Overview of Extraction Methods, Health Benefits, and Encapsulation
and Delivery Using Microemulsions and Nanoemulsions
https://www.sciencedirect.com/science/article/pii/S0022316622024087
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.1533
https://www.mdpi.com/2076-3921/13/8/983
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6257
https://pmc.ncbi.nlm.nih.gov/articles/PMC11421876/
https://journals.sagepub.com/doi/abs/10.1177/0269881114552744
https://www.sciencedirect.com/science/article/pii/S000689931930530X
https://www.sciencedirect.com/science/article/pii/S2161831322008419
Piperine(Bioperine)
5 Emerging Benefits of BioPerine and Piperine Supplements
11
Science-Backed Health Benefits of Black Pepper
Black
Pepper And Piperine: Health Benefits + Side Effects - SelfDecode
Supplements
Using
Black Pepper to Enhance the Anti-Inflammatory Effects of
Turmeric
Black
Pepper And Piperine: Health Benefits + Side Effects - SelfHacked
Alpha Lipoic Acid (ALA)
Alpha Lipoic Acid: Main Benefits and Side Effects
https://www.webmd.com/diet/alpha-lipoic-acid-ala?form=MG0AV3
https://www.webmd.com/vitamins/ai/ingredientmono-767/alpha-lipoic-acid?form=MG0AV3
https://www.ncbi.nlm.nih.gov/books/NBK564301/
https://lpi.oregonstate.edu/mic/dietary-factors/lipoic-acid
https://www.mountsinai.org/health-library/supplement/alpha-lipoic-acid
Alpha-lipoic
acid Information | Mount Sinai - New York
https://www.verywellhealth.com/alpha-lipoic-acid-88727
Prickly Pear (nopal cactus)
Science-Backed
Benefits of Prickly Pear Cactus
Antioxidant
and Anticlastogenic Capacity of Prickly Pear Juice - PMC
Prickly
Pear Cactus: Health Benefits, Side Effects, Uses, Dose &
Precautions
Health
Benefits of Nopal 'Prickly Pear' Cactus and How to Cook Nopales |
livestrong
Prickly
Pear Cactus: Uses and Risks
Prickly
Pear Benefits, According to a Dietitian
Prickly
Pear: A Cactus Cure? | Wellness Therapies | Andrew Weil, M.D.
Does
prickly pear cactus have health benefits? | Beacon Health
System
Nopal:
Cactus Benefits, Edible Parts, When to
Avoid
Acetyl-L-Carnitine
L-Carnitine:
Benefits, Side Effects, Sources, and Dosage
Benefits
of Acetyl L-Carnitine | Simply Supplements
https://selfhacked.com/blog/acetyl-l-carnitine/
ACETYL-L-CARNITINE:
Overview, Uses, Side Effects, Precautions, Interactions, Dosing and
Reviews
L-Carnitine:
Benefits, Side Effects, Sources, and Dosage
Acetyl-L-Carnitine:
Uses and Risks
Carnitine
(L-carnitine) Information | Mount Sinai - New York
L-Carnitine
| Linus Pauling Institute | Oregon State University
https://www.healthline.com/nutrition/l-carnitine
https://www.webmd.com/vitamins/ai/ingredientmono-834/acetyl-l-carnitine
L-Carnitine
benefits, dosage, and side effects
Acetyl-L-Carnitine
Benefits: Burn Fat and Power Your Brain | Bulletproof
L-Carnitine:
Types, benefits, and side effects
Acetylcarnitine
- an overview | ScienceDirect Topics
Synephrine
Cardiovascular
Safety of Oral p-Synephrine (Bitter Orange) in Healthy Subjects: A
Randomized Placebo-Controlled Cross-over Clinical Trial - PubMed
The
Safety and Efficacy of Citrus aurantium (Bitter Orange) Extracts and
p-Synephrine: A Systematic Review and Meta-Analysis
https://www.healthline.com/nutrition/bitter-orange
https://pubmed.ncbi.nlm.nih.gov/16317106/
Bitter
Orange: Usefulness and Safety | NCCIH
Bitter
Orange: Usefulness and Safety | NCCIH
Determination
of Synephrine in Bitter Orange Raw Materials, Extracts, and Dietary
Supplements by Liquid Chromatography with Ultraviolet Detection:
Single-Laboratory Validation - PMC
A
Review of the Human Clinical Studies Involving Citrus aurantium
(Bitter Orange) Extract and its Primary Protoalkaloid p-Synephrine -
PMC
Green Coffee Extract
https://www.sciencedirect.com/science/article/abs/pii/S0965229920304441
https://www.sciencedirect.com/science/article/abs/pii/S2213434422000275
Does
green coffee bean extract work? A detailed review
Green
Coffee Extract benefits, dosage, and side effects
Green
Coffee Extract - an overview | ScienceDirect Topics
Raspberry Ketones
Pharmacological
Exploration of Phenolic Compound: Raspberry Ketone—Update 2020 -
PMC
Potentials
of Raspberry Ketone as a Natural Antioxidant
Potentials
of Raspberry Ketone as a Natural Antioxidant - PMC
Anti-obese
action of raspberry ketone - PubMed
Potential
metabolic activities of raspberry ketone - PubMed
Rasberry
Ketone - Supplement Facts and Effects | Live Science
https://pmc.ncbi.nlm.nih.gov/articles/PMC3338106/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8346687/
Raspberry
Ketones: Uses, Health Benefits, and Risks
Pharmacological
Exploration of Phenolic Compound: Raspberry Ketone—Update 2020
Guarana extract
GUARANA:
Overview, Uses, Side Effects, Precautions, Interactions, Dosing and
Reviews
https://www.healthline.com/nutrition/guarana-benefits
The
Truth About Guarana | Live Science
Effects
of the consumption of guarana on human health: A narrative review -
PubMed
Guarana
- LiverTox - NCBI Bookshelf
Guarana:
12 benefits, side effects, and safety
Guarana
Provides Additional Stimulation over Caffeine Alone in the Planarian
Model - PMC
Guarana
Seed Extract | Baseline of Health Foundation
Guarana
Cellular Extract – NATIVE EXTRACTS
Guarana:
Health Benefits, Side Effects, Uses, Dose & Precautions
Capsaicin
Capsaicin
- Wikipedia
Capsaicin
- StatPearls - NCBI Bookshelf
Capsaicin:
Uses, Interactions, Mechanism of Action | DrugBank Online
Capsaicin
Cream & Supplements: Purpose, How to Use, & Side
Effects
Mechanisms
and clinical uses of capsaicin - ScienceDirect
Capsaicin:
Health Benefits, Safety Information, Dosage, and More
Capsaicin
Supplements: Benefits, Dosage, and Side Effects
What
is Capsaicin? Heat Level, Health Benefits and More - Chili Pepper
Madness
Capsaicin:
A review of its pharmacology and clinical applications -
ScienceDirect
https://pmc.ncbi.nlm.nih.gov/articles/PMC6273101/
Capsaicin
- an overview | ScienceDirect Topics
Vitamin B12
https://pmc.ncbi.nlm.nih.gov/articles/PMC9740080/
https://www.bmj.com/content/1/5329/535.1
https://www.sciencedirect.com/science/article/pii/S0009912022002314
https://pubmed.ncbi.nlm.nih.gov/14636871/
https://www.healthline.com/nutrition/vitamin-b12-benefits
https://www.nature.com/articles/s41598-021-92945-y
https://www.healthline.com/nutrition/vitamin-b12-foods
https://www.sciencedirect.com/science/article/pii/S000291652202929X
https://www.hopkinsmedicine.org/health/conditions-and-diseases/vitamin-b12-deficiency-anemia
https://www.ncbi.nlm.nih.gov/books/NBK441923/
https://www.mountsinai.org/health-library/tests/vitamin-b12-level
https://www.healthline.com/health/vitamin-b12-level
https://my.clevelandclinic.org/health/diseases/22831-vitamin-b12-deficiency
https://www.webmd.com/diet/vitamin-b12-deficiency-symptoms-causes
Vitamin B6
https://www.medicalnewstoday.com/articles/219662
https://www.healthline.com/nutrition/vitamin-b6-benefits
https://www.mayoclinic.org/drugs-supplements-vitamin-b6/art-20363468#
https://health.clevelandclinic.org/vitamin-b6
https://www.webmd.com/vitamins-and-supplements/ss/slideshow-vitamins-vitamin-b6-deficiency
https://www.webmd.com/diet/health-benefits-vitamin-b6
https://www.myfooddata.com/articles/foods-high-in-vitamin-B6.php
PYRIDOXINE
(VITAMIN B6): Overview, Uses, Side Effects, Precautions,
Interactions, Dosing and Reviews
https://lpi.oregonstate.edu/mic/vitamins/vitamin-B6
https://nutritionsource.hsph.harvard.edu/vitamin-b6/
https://www.sciencedirect.com/science/article/abs/pii/B9780323661621000135
https://ods.od.nih.gov/factsheets/VitaminB6-HealthProfessional/
Womens THRIVE
Womens THRIVE
Marine Collagen Type 1
https://www.spandidos-publications.com/10.3892/etm.2019.8342?crsi=662496684&cicada_org_src=healthwebmagazine.com&cicada_org_mdm=direct
https://www.mdpi.com/1660-3397/19/10/542
https://benthamopen.com/ABSTRACT/TONUTRAJ-8-29
https://www.mdpi.com/1420-3049/24/22/4031
https://onlinelibrary.wiley.com/doi/abs/10.1111/ijd.15518
https://www.mdpi.com/1660-3397/20/1/61
https://www.mdpi.com/2072-6643/15/9/2080
https://www.mdpi.com/1660-3397/22/4/159
https://www.sciencedirect.com/science/article/abs/pii/S2211926421000928
https://www.mdpi.com/1467-3045/46/2/63
https://link.springer.com/article/10.1007/s00726-021-03072-x
https://apcz.umk.pl/JEHS/article/view/55474
https://apcz.umk.pl/QS/article/view/53977
https://www.sciencedirect.com/science/article/pii/S0928493119346892
https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2023.1245077/full
https://www.mdpi.com/1660-3397/18/4/214
https://pmc.ncbi.nlm.nih.gov/articles/PMC11351696/
https://www.sciencedirect.com/science/article/abs/pii/B9780323910958000027
https://www.mdpi.com/1660-3397/12/12/5881
https://www.mdpi.com/2073-4360/13/22/3868
https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2021.702108/full
https://www.mdpi.com/2410-3888/7/5/265
https://www.mdpi.com/1424-8247/16/7/1020
https://www.mdpi.com/1420-3049/27/8/2498
https://www.tandfonline.com/doi/abs/10.1080/87559129.2010.484285
https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.999752/full
https://www.mdpi.com/1422-0067/24/7/6328
https://link.springer.com/chapter/10.1007/978-1-4419-7756-4_38
https://link.springer.com/chapter/10.1007/978-3-319-28383-8_12
L-Theanine
https://www.tandfonline.com/doi/abs/10.1080/07315724.2014.926153
https://www.tandfonline.com/doi/full/10.1186/s12970-019-0274-y
https://www.sciencedirect.com/science/article/abs/pii/S0955286321002795#
https://www.sciencedirect.com/science/article/abs/pii/S1043661819307790
https://apcz.umk.pl/QS/article/view/50537
https://onlinelibrary.wiley.com/doi/full/10.4061/2010/307475
https://jahssp.azaruniv.ac.ir/article_14713_338306d4f5f2a99306345d2ce8a46661.pdf?lang=en
https://www.mdpi.com/1420-3049/28/9/3846
https://www.tandfonline.com/doi/abs/10.3109/09637486.2011.629180
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6277
https://www.sciencedirect.com/science/article/pii/S2221169117308420
https://link.springer.com/article/10.1186/s12970-019-0326-3
https://www.tandfonline.com/doi/abs/10.1271/bbb.80663
https://archivosdemedicinadeldeporte.com/articulos/upload/rev01_mata_ordonez-ingles.pdf
https://link.springer.com/article/10.1186/s12888-024-06285-y
https://www.tandfonline.com/doi/full/10.1080/13880209.2018.1557698
https://www.mdpi.com/2504-3900/91/1/32
https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1419978/full
Ashwagandha
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.7598
https://intapi.sciendo.com/pdf/10.2478/pjst-2023-0022
https://www.mdpi.com/2411-5142/6/1/20
https://apcz.umk.pl/JEHS/article/view/43821
https://link.springer.com/article/10.1007/s13668-023-00481-0
https://journals.sagepub.com/doi/full/10.1177/02698811231200023
https://www.mdpi.com/2072-6643/16/12/1813
https://link.springer.com/article/10.1186/s12970-015-0104-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.7598
https://www.mdpi.com/1422-0067/24/22/16513
https://www.sciencedirect.com/science/article/abs/pii/S2210803321000142
https://pmc.ncbi.nlm.nih.gov/articles/PMC9701317/
https://onlinelibrary.wiley.com/doi/full/10.1002/hsr2.741
https://obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/jog.15030
https://journals.sagepub.com/doi/full/10.1177/1557988319835985
https://onlinelibrary.wiley.com/doi/full/10.1155/2015/284154
https://www.researchsquare.com/article/rs-5203033/v1
https://www.sciencedirect.com/science/article/abs/pii/S1472648317306259
https://www.researchsquare.com/article/rs-3675567/v1
Coenzyme Q10
https://www.nature.com/articles/1600880
https://www.ingentaconnect.com/content/ben/cdm/2016/00000017/00000004/art00007
https://www.mdpi.com/2072-6643/14/20/4383
https://www.tandfonline.com/doi/full/10.2147/NDS.S112119
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2018.00044/full
https://onlinelibrary.wiley.com/doi/full/10.1002/fsn3.1492
https://www.mdpi.com/1422-0067/21/21/7870
https://www.sciencedirect.com/science/article/abs/pii/S0965229918311506
https://www.sciencedirect.com/science/article/abs/pii/S1043661816312804
Nicotinamide Riboside NAD
https://www.mdpi.com/2072-6643/12/6/1616
https://www.science.org/doi/full/10.1126/sciadv.adi4862
https://www.nature.com/articles/s41467-018-03421-7
https://link.springer.com/article/10.1007/s13668-023-00475-y
https://www.mdpi.com/2072-6643/14/19/3889
https://www.annualreviews.org/content/journals/10.1146/annurev.nutr.28.061807.155443
https://link.springer.com/article/10.1007/s00394-019-01919-4
https://www.mdpi.com/1420-3049/28/16/6078
https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2022.881703/full
https://pmc.ncbi.nlm.nih.gov/articles/PMC10692436/
Reservatrol
https://onlinelibrary.wiley.com/doi/abs/10.1002/med.21565
https://www.mdpi.com/1422-0067/23/7/4027
https://abp.ptbioch.edu.pl/index.php/abp/article/view/2749
https://www.sciencedirect.com/science/article/abs/pii/S1568163715000045
https://journals.sagepub.com/doi/full/10.2203/dose-response.09-015.Mukherjee
https://www.sciencedirect.com/science/article/pii/S1010660X1630009X
https://onlinelibrary.wiley.com/doi/full/10.1002/mnfr.201100143
https://www.mdpi.com/2304-8158/9/3/340
https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1111/nyas.12155
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1473-2165.2008.00354.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/iwj.13601
https://www.sciencedirect.com/science/article/abs/pii/S175646461400245X
Mens THRIVE
Mens THRIVE
Fenugreek
https://www.sciencedirect.com/science/article/pii/S2095254615000216
https://www.degruyter.com/document/doi/10.1515/jcim-2019-0101/html
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6627
https://www.mdpi.com/2075-4426/13/3/427
https://www.sciencedirect.com/science/article/abs/pii/B9780128210383000379
https://www.sciencedirect.com/science/article/abs/pii/B9780128021477000449
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/a-2048-5925
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310170
https://link.springer.com/article/10.1186/1550-2783-7-34
Ajuga Turkestanica and Cyanotis
arachnoidea / Plant Ecdysteroids
The
minor ecdysteroids from Ajuga turkestanica
https://examine.com/supplements/ecdysteroids/?form=MG0AV3&show_conditions=true
https://www.mdpi.com/2072-6643/16/9/1382?form=MG0AV3
https://www.mdpi.com/1422-0067/19/7/1885?form=MG0AV3
https://www.europeanreview.org/wp/wp-content/uploads/2584-2592.pdf
https://www.scirp.org/html/7-8801140_26159.htm
https://www.mdpi.com/2072-6643/16/9/1382
https://www.sciencedirect.com/science/article/abs/pii/B9780444634733000058
Tongkat Ali
https://www.mdpi.com/2076-3417/14/11/4372?form=MG0AV3
https://jissn.biomedcentral.com/articles/10.1186/1550-2783-10-28?form=MG0AV3
https://www.publish.csiro.au/hc/pdf/HC22143?form=MG0AV3
https://www.tandfonline.com/doi/full/10.1186/1550-2783-10-28
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.5017
https://www.sciencedirect.com/science/article/abs/pii/B9780128139226000631
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0272.2011.01168.x
https://www.mdpi.com/2076-3417/14/11/4372
https://www.sciencedirect.com/science/article/abs/pii/S0378512220304497
https://www.sciencedirect.com/science/article/abs/pii/B9780128155653000163
https://wyattandfreunde.com.au/blogs/news/tongkat-ali-health-benefits-dosage-and-precautions
https://greytopwarriors.com/tongkat-ali-the-natural-testosterone-booster-for-men-40/
Ashwagandha
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.7598
https://intapi.sciendo.com/pdf/10.2478/pjst-2023-0022
https://www.mdpi.com/2411-5142/6/1/20
https://apcz.umk.pl/JEHS/article/view/43821
https://link.springer.com/article/10.1007/s13668-023-00481-0
https://journals.sagepub.com/doi/full/10.1177/02698811231200023
https://www.mdpi.com/2072-6643/16/12/1813
https://link.springer.com/article/10.1186/s12970-015-0104-9
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.7598
https://www.mdpi.com/1422-0067/24/22/16513
https://www.sciencedirect.com/science/article/abs/pii/S2210803321000142
https://pmc.ncbi.nlm.nih.gov/articles/PMC9701317/
https://onlinelibrary.wiley.com/doi/full/10.1002/hsr2.741
https://obgyn.onlinelibrary.wiley.com/doi/abs/10.1111/jog.15030
https://journals.sagepub.com/doi/full/10.1177/1557988319835985
https://onlinelibrary.wiley.com/doi/full/10.1155/2015/284154
https://www.researchsquare.com/article/rs-5203033/v1
https://www.sciencedirect.com/science/article/abs/pii/S1472648317306259
https://www.researchsquare.com/article/rs-3675567/v1
Fadogia Agrestis
https://www.thieme-connect.com/products/ejournals/abstract/10.1055/a-0715-1801
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-7262.2005.00052.x
https://www.elo.health/articles/foods-and-supplements-that-impact-testosterone/
https://advancedmolecularlabs.com/blogs/news/2023-best-testosterone-boosting-diet-supplement-stack
https://www.academia.edu/download/84208657/qredirect.pdf
https://www.ajol.info/index.php/ijbcs/article/view/262642
https://www.degruyter.com/document/doi/10.1515/hmbci-2022-0090/html
https://onlinelibrary.wiley.com/doi/abs/10.1111/and.13509
https://onlinelibrary.wiley.com/doi/abs/10.1111/and.12677
https://bacandrology.biomedcentral.com/counter/pdf/10.1007/s12610-009-0030-2.pdf
Zinc
https://www.sciencedirect.com/science/article/abs/pii/S0946672X06000411
https://jamanetwork.com/journals/jama/fullarticle/2758450
https://www.sciencedirect.com/science/article/abs/pii/S089990079680058X
https://www.sciencedirect.com/science/article/abs/pii/S0002916523312863
https://pmc.ncbi.nlm.nih.gov/articles/PMC6010824/
https://www.sciencedirect.com/science/article/abs/pii/S089990070700322X
Vitamin D
https://academic.oup.com/jbmr/article/35/5/883/7516653
https://www.bmj.com/content/326/7387/469?eaf
https://journals.sagepub.com/doi/abs/10.1177/0022034513495239
https://academic.oup.com/jcem/article-abstract/94/4/1214/2596299
https://journals.sagepub.com/doi/abs/10.1177/1941738112461621
https://academic.oup.com/jcem/article/102/11/4292/4096785
https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0030-1269854
https://www.sciencedirect.com/science/article/abs/pii/S0960076012002452
https://academic.oup.com/jcem/article-abstract/96/4/955/2720842
Vitamin K
Vitamin
K as a Diet Supplement with Impact in Human Health: Current Evidence
in Age-Related Diseases
https://academic.oup.com/nutritionreviews/article/80/4/677/6362591?form=MG0AV3
https://link.springer.com/article/10.1007/s40620-019-00685-0?form=MG0AV3
https://academic.oup.com/jcem/article-abstract/93/4/1217/2826351
https://www.sciencedirect.com/science/article/abs/pii/S0306987715000110
https://openheart.bmj.com/content/2/1/e000300
https://pmc.ncbi.nlm.nih.gov/articles/PMC5726210/
https://www.sciencedirect.com/science/article/abs/pii/S0083672907000167
https://www.tandfonline.com/doi/full/10.4161/19381972.2014.968490
OPTI Sleep
OPTI Sleep
Magnesium Biglycinate
https://www.qualialife.com/magnesium-bisglycinate-benefits
https://wisemindnutrition.com/blog/magnesium-sleep-and-anxiety
https://www.drlamcoaching.com/blog/magnesium-supplements/
https://drbrighten.com/magnesium-benefits-15-ways-this-mineral-boosts-health/
https://biolyceum.com/magnesium-glycinate-supplements/
https://prlabs.com/blog/unlocking-calm-and-vitality-your-guide-to-magnesium-glycinate-benefits.html
https://drroseann.com/best-time-magnesium-sleep/
https://augmentlifeshop.com/en-dk/blogs/extending-healthy-lifespan/magnesium-supplementation
https://blog.purehealthresearch.com/magnesium-citrate-vs-glycinate/
https://pmc.ncbi.nlm.nih.gov/articles/PMC11136869/
https://link.springer.com/article/10.1007/s12011-022-03162-1
https://academic.oup.com/sleep/article/45/4/zsab276/6432454
https://www.sciencedirect.com/science/article/abs/pii/S0165032724007183
Zinc
https://journals.sagepub.com/doi/abs/10.1177/2165079917734880
https://www.mdpi.com/1422-0067/18/11/2334?ref=rise-and-grind
https://onlinelibrary.wiley.com/doi/full/10.1002/hsr2.70019
https://pdfs.semanticscholar.org/76ae/cf06a0cb5eecc887828846d951ef9e02447b.pdf
https://academic.oup.com/pmj/article/98/1158/285/6958842
https://www.mdpi.com/2072-6643/16/2/251
https://link.springer.com/article/10.1007/S00415-020-10381-W
L-Theanine
https://www.tandfonline.com/doi/abs/10.1080/07315724.2014.926153
https://www.tandfonline.com/doi/full/10.1186/s12970-019-0274-y
https://www.sciencedirect.com/science/article/abs/pii/S0955286321002795#
https://www.sciencedirect.com/science/article/abs/pii/S1043661819307790
https://apcz.umk.pl/QS/article/view/50537
https://onlinelibrary.wiley.com/doi/full/10.4061/2010/307475
https://jahssp.azaruniv.ac.ir/article_14713_338306d4f5f2a99306345d2ce8a46661.pdf?lang=en
https://www.mdpi.com/1420-3049/28/9/3846
https://www.tandfonline.com/doi/abs/10.3109/09637486.2011.629180
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6277
https://www.sciencedirect.com/science/article/pii/S2221169117308420
https://link.springer.com/article/10.1186/s12970-019-0326-3
https://www.tandfonline.com/doi/abs/10.1271/bbb.80663
https://archivosdemedicinadeldeporte.com/articulos/upload/rev01_mata_ordonez-ingles.pdf
https://link.springer.com/article/10.1186/s12888-024-06285-y
https://www.tandfonline.com/doi/full/10.1080/13880209.2018.1557698
https://www.mdpi.com/2504-3900/91/1/32
https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1419978/full
5-Hydroxtrptophan (5-HTP)
https://www.sciencedirect.com/science/article/pii/S0261561424000104
https://www.sciencedirect.com/science/article/pii/S2475299123108900
https://academic.oup.com/nutritionreviews/article-abstract/80/2/306/6263432
https://link.springer.com/article/10.1007/s00431-004-1444-7
https://www.sciencedirect.com/science/article/pii/S2475299123133567
https://link.springer.com/article/10.1007/s11325-021-02417-w
https://www.bodybuilding.com/fun/dream-big-supplements-for-sleep-and-recovery.html
https://journals.sagepub.com/doi/abs/10.1177/0269881119855978
https://dergipark.org.tr/en/pub/joinihp/issue/76305/1200416
Chamomile
https://pmc.ncbi.nlm.nih.gov/articles/PMC11321869/
https://www.sciencedirect.com/science/article/pii/S0965229924000591
https://brill.com/edcollchap/book/9789086867639/BP000028.xml
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470311/
https://onlinelibrary.wiley.com/doi/full/10.1155/2020/3792390
https://core.ac.uk/download/pdf/234697981.pdf
https://www.mdpi.com/2306-5710/7/2/33
https://www.liebertpub.com/doi/pdf/10.1089/act.2012.18310
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6349
https://ebcj.mums.ac.ir/http://ebcj.mums.ac.ir/article_3368.html
https://link.springer.com/article/10.1186/1472-6882-11-78
https://www.sciencedirect.com/science/article/pii/S0965229924000591
Valerian Root Extract
https://www.sciencedirect.com/science/article/pii/0091305782902647
https://www.thieme-connect.com/products/ejournals/html/10.1055/s-2000-7972
https://www.scopusacademia.org/index.php/jmea/article/view/443
https://journals.sagepub.com/doi/abs/10.1177/2515690X20967323
https://www.sciencedirect.com/science/article/pii/S0002934306002750
https://link.springer.com/article/10.1007/BF00432503
https://link.springer.com/article/10.1007/s12325-023-02708-6
https://www.sciencedirect.com/science/article/pii/S0944711312001584
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8077445/
https://www.jstage.jst.go.jp/article/cpb1958/40/3/40_3_758/_article/-char/ja/
PURE Collagen
PURE Collagen
Marine Collagen Type 1
https://www.spandidos-publications.com/10.3892/etm.2019.8342?crsi=662496684&cicada_org_src=healthwebmagazine.com&cicada_org_mdm=direct
https://www.mdpi.com/1660-3397/19/10/542
https://benthamopen.com/ABSTRACT/TONUTRAJ-8-29
https://www.mdpi.com/1420-3049/24/22/4031
https://onlinelibrary.wiley.com/doi/abs/10.1111/ijd.15518
https://www.mdpi.com/1660-3397/20/1/61
https://www.mdpi.com/2072-6643/15/9/2080
https://www.mdpi.com/1660-3397/22/4/159
https://www.sciencedirect.com/science/article/abs/pii/S2211926421000928
https://www.mdpi.com/1467-3045/46/2/63
https://link.springer.com/article/10.1007/s00726-021-03072-x
https://apcz.umk.pl/JEHS/article/view/55474
https://apcz.umk.pl/QS/article/view/53977
https://www.sciencedirect.com/science/article/pii/S0928493119346892
https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2023.1245077/full
https://www.mdpi.com/1660-3397/18/4/214
https://pmc.ncbi.nlm.nih.gov/articles/PMC11351696/
https://www.sciencedirect.com/science/article/abs/pii/B9780323910958000027
https://www.mdpi.com/1660-3397/12/12/5881
https://www.mdpi.com/2073-4360/13/22/3868
https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2021.702108/full
https://www.mdpi.com/2410-3888/7/5/265
Vitamin C
https://www.mdpi.com/2076-3921/11/9/1663
https://www.tandfonline.com/doi/abs/10.1080/07315724.1995.10718484
ULTRA Mind
ULTRA Mind
CDP-Choline
https://www.sciencedirect.com/science/article/abs/pii/S1934148211001766
https://www.sciencedirect.com/science/article/pii/S0091305715000453
https://www.frontiersin.org/journals/endocrinology/articles/10.3389/fendo.2023.1148166/full
https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD000269.pub3/abstract
https://journals.sagepub.com/doi/abs/10.1177/0269881114553254
https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.120.031903
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1242853/full
https://link.springer.com/article/10.1007/s40120-020-00227-y
https://www.mdpi.com/2072-6643/11/12/2995
https://link.springer.com/article/10.1186/s13023-023-02842-y
Moringa Leaf Extract
https://www.sciencedirect.com/science/article/abs/pii/S0944711321003147
https://koreascience.kr/article/JAKO201435648479194.page
https://www.mdpi.com/2076-3921/11/2/402
https://onlinelibrary.wiley.com/doi/full/10.1155/2021/6627265
https://search.informit.org/doi/abs/10.3316/informit.385236699389737
https://www.degruyter.com/document/doi/10.1515/dmpt-2020-0189/html
https://link.springer.com/article/10.1007/s11136-021-02842-0
https://www.ajol.info/index.php/njps/article/view/152621
Mucuna Pruriens
https://www.neurology.org/doi/full/10.1212/WNL.0000000000004175
https://onlinelibrary.wiley.com/doi/abs/10.1111/jfbc.12292
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1092032/full
https://www.mdpi.com/1420-3049/27/10/3131
https://link.springer.com/article/10.1007/s13205-020-02253-x
https://www.sciencedirect.com/science/article/pii/S2667031323000611
https://onlinelibrary.wiley.com/doi/abs/10.1093/ecam/nem171
Curcumin Extract
Curcumin:
A Review of Its Effects on Human Health
Multiple
health benefits of curcumin and its therapeutic potential |
Environmental Science and Pollution Research
Curcumin:
Overview of Extraction Methods, Health Benefits, and Encapsulation
and Delivery Using Microemulsions and Nanoemulsions
https://www.sciencedirect.com/science/article/pii/S0022316622024087
https://iubmb.onlinelibrary.wiley.com/doi/abs/10.1002/biof.1533
https://www.mdpi.com/2076-3921/13/8/983
https://onlinelibrary.wiley.com/doi/abs/10.1002/ptr.6257
https://pmc.ncbi.nlm.nih.gov/articles/PMC11421876/
https://journals.sagepub.com/doi/abs/10.1177/0269881114552744
https://www.sciencedirect.com/science/article/pii/S000689931930530X
https://www.sciencedirect.com/science/article/pii/S2161831322008419
Phosphatidylserine
https://link.springer.com/article/10.2165/00007256-200636080-00003
https://www.tandfonline.com/doi/full/10.2147/CIA.S40348
https://www.intelligentlabs.org/what-is-phosphatidylserine/?nab=1
https://www.emerald.com/insight/content/doi/10.1108/mi.2015.5647/full/html
https://onlinelibrary.wiley.com/doi/full/10.1111/jhn.12090
https://www.tandfonline.com/doi/abs/10.1179/147683008X301478
https://www.sciencedirect.com/science/article/pii/S0163782714000289
https://link.springer.com/article/10.1007/s12325-014-0165-1
Lutein
https://www.mdpi.com/1420-3049/26/19/5794
https://www.sciencedirect.com/science/article/pii/S0002916523030228
https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.843512/full
https://www.mdpi.com/2072-6643/12/3/617
https://academic.oup.com/nutritionreviews/article-abstract/72/9/605/1860232
Further references on nutraceutical supplementation
Further references on nutraceutical supplementation
Nicolson
GL, Ash ME. Lipid Replacement Therapy: a natural medicine approach
to replacing damaged lipids in cellular membranes and organelles and
restoring function. Biochim Biophys Acta. 2014;1838:1657–79.
Nicolson
GL, Rosenblatt S, de Mattos GF, Settineri R, Breeding PC, Ellithorpe
RR, et al. Clinical Uses of Membrane Lipid Replacement Supplements
in Restoring Membrane Function and Reducing Fatigue in Chronic
Diseases and Cancer. Discoveries (Craiova). 2016;4:e54.
Agadjanyan
M, Vasilevko V, Ghochikyan A, Berns P, Kesslak P, Settineri RA, et
al. Nutritional Supplement (NT FactorTM) Restores Mitochondrial
Function and Reduces Moderately Severe Fatigue in Aged Subjects. J
Chronic Fatigue Syndr. Taylor & Francis; 2003;11:23–36.
Naguib
YM. Antioxidant activities of astaxanthin and related carotenoids. J
Agric Food Chem. 2000;48:1150–4.
Kidd
P. Astaxanthin, cell membrane nutrient with diverse clinical
benefits and anti-aging potential. Altern Med Rev. 2011;16:355–64.
Kim
SH, Kim H. Inhibitory Effect of Astaxanthin on Oxidative
Stress-Induced Mitochondrial Dysfunction-A Mini-Review. Nutrients
[Internet]. 2018;10. Available from:
http://dx.doi.org/10.3390/nu10091137
Yu
T, Dohl J, Chen Y, Gasier HG, Deuster PA. Astaxanthin but not
quercetin preserves mitochondrial integrity and function,
ameliorates oxidative stress, and reduces heat-induced skeletal
muscle injury. J Cell Physiol. 2019;234:13292–302.
Krestinina
O, Baburina Y, Krestinin R, Odinokova I, Fadeeva I, Sotnikova L.
Astaxanthin Prevents Mitochondrial Impairment Induced by
Isoproterenol in Isolated Rat Heart Mitochondria. Antioxidants
(Basel) [Internet]. 2020;9. Available from:
http://dx.doi.org/10.3390/antiox9030262
Sztretye
M, Dienes B, Gönczi M, Czirják T, Csernoch L, Dux L, et al.
Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant
Treatment in Diseases and with Aging. Oxid Med Cell Longev.
2019;2019:3849692.
Liu
SZ, Ali AS, Campbell MD, Kilroy K, Shankland EG, Roshanravan B, et
al. Building strength, endurance, and mobility using an astaxanthin
formulation with functional training in elderly. J Cachexia
Sarcopenia Muscle. 2018;9:826–33.
Malmsten
CL, Lignell A. Dietary Supplementation with Astaxanthin-Rich Algal
Meal Improves Strength Endurance–A Double Blind Placebo Controlled
Study on Male Students–. Carotenoid Sci. 2008;13:20–2.
Fleischmann
C, Horowitz M, Yanovich R, Raz H, Heled Y. Asthaxanthin Improves
Aerobic Exercise Recovery Without Affecting Heat Tolerance in
Humans. Front Sports Act Living. 2019;1:17.
Djordjevic
B, Baralic I, Kotur-Stevuljevic J, Stefanovic A, Ivanisevic J,
Radivojevic N, et al. Effect of astaxanthin supplementation on
muscle damage and oxidative stress markers in elite young soccer
players. J Sports Med Phys Fitness. 2012;52:382–92.
Filler
K, Lyon D, Bennett J, McCain N, Elswick R, Lukkahatai N, et al.
Association of Mitochondrial Dysfunction and Fatigue: A Review of
the Literature. BBA Clin. 2014;1:12–23.
Kim
SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, et al. Substrate and
functional diversity of lysine acetylation revealed by a proteomics
survey. Mol Cell. 2006;23:607–18.
Kerner
J, Yohannes E, Lee K, Virmani A, Koverech A, Cavazza C, et al.
Acetyl-L-carnitine increases mitochondrial protein acetylation in
the aged rat heart. Mech Ageing Dev. 2015;145:39–50.
Rosca
MG, Lemieux H, Hoppel CL. Mitochondria in the elderly: Is
acetylcarnitine a rejuvenator? Adv Drug Deliv Rev. 2009;61:1332–42.
Malaguarnera
M, Gargante MP, Cristaldi E, Colonna V, Messano M, Koverech A, et
al. Acetyl L-carnitine (ALC) treatment in elderly patients with
fatigue. Arch Gerontol Geriatr. 2008;46:181–90.
Zdzisińska
B, Żurek A, Kandefer-Szerszeń M. Alpha-Ketoglutarate as a Molecule
with Pleiotropic Activity: Well-Known and Novel Possibilities of
Therapeutic Use. Arch Immunol Ther Exp . 2017;65:21–36.
Wu
N, Yang M, Gaur U, Xu H, Yao Y, Li D. Alpha-Ketoglutarate:
Physiological Functions and Applications. Biomol Ther . 2016;24:1–8.
Harrison
AP, Pierzynowski SG. Biological effects of 2-oxoglutarate with
particular emphasis on the regulation of protein, mineral and lipid
absorption/metabolism, muscle performance, kidney function, bone
formation and cancerogenesis, all viewed from a healthy ageing
perspective state of the art–review article. J Physiol Pharmacol.
2008;59 Suppl 1:91–106.
Asadi
Shahmirzadi A, Edgar D, Liao C-Y, Hsu Y-M, Lucanic M, Asadi
Shahmirzadi A, et al. Alpha-Ketoglutarate, an Endogenous Metabolite,
Extends Lifespan and Compresses Morbidity in Aging Mice. Cell Metab.
2020;32:447–56.e6.
Demidenko
O, Barardo D, Budovskii V, Finnemore R, Palmer FR, Kennedy BK, et
al. Rejuvant®, a potential life-extending compound formulation with
alpha-ketoglutarate and vitamins, conferred an average 8 year
reduction in biological aging, after an average of 7 months of use,
in the TruAge DNA methylation test. Aging . 2021;13:24485–99.
Walsh
B, Tonkonogi M, Söderlund K, Hultman E, Saks V, Sahlin K. The role
of phosphorylcreatine and creatine in the regulation of
mitochondrial respiration in human skeletal muscle. J Physiol.
2001;537:971–8.
Barbieri
E, Guescini M, Calcabrini C, Vallorani L, Diaz AR, Fimognari C, et
al. Creatine Prevents the Structural and Functional Damage to
Mitochondria in Myogenic, Oxidatively Stressed C2C12 Cells and
Restores Their Differentiation Capacity. Oxid Med Cell Longev.
2016;2016:5152029.
Sestili
P, Barbieri E, Martinelli C, Battistelli M, Guescini M, Vallorani L,
et al. Creatine supplementation prevents the inhibition of myogenic
differentiation in oxidatively injured C2C12 murine myoblasts. Mol
Nutr Food Res. 2009;53:1187–204.
Sestili
P, Barbieri E, Stocchi V. Effects of Creatine in Skeletal Muscle
Cells and in Myoblasts Differentiating Under Normal or Oxidatively
Stressing Conditions. Mini Rev Med Chem. 2016;16:4–11.
Dempsey
RL, Mazzone MF, Meurer LN. Does oral creatine supplementation
improve strength? A meta-analysis. J Fam Pract. 2002;51:945–51.
Branch
JD. Effect of creatine supplementation on body composition and
performance: a meta-analysis. Int J Sport Nutr Exerc Metab.
2003;13:198–226.
Lanhers
C, Pereira B, Naughton G, Trousselard M, Lesage F-X, Dutheil F.
Creatine Supplementation and Lower Limb Strength Performance: A
Systematic Review and Meta-Analyses. Sports Med. 2015;45:1285–94.
Lanhers
C, Pereira B, Naughton G, Trousselard M, Lesage F-X, Dutheil F.
Creatine Supplementation and Upper Limb Strength Performance: A
Systematic Review and Meta-Analysis. Sports Med. 2017;47:163–73.
Chilibeck
PD, Kaviani M, Candow DG, Zello GA. Effect of creatine
supplementation during resistance training on lean tissue mass and
muscular strength in older adults: a meta-analysis. Open Access J
Sports Med. 2017;8:213–26.
Filler
K, Lyon D, Bennett J, McCain N, Elswick R, Lukkahatai N, et al.
Association of Mitochondrial Dysfunction and Fatigue: A Review of
the Literature. BBA Clin. 2014;1:12–23.
Cordero
MD, Moreno-Fernández AM, deMiguel M, Bonal P, Campa F,
Jiménez-Jiménez LM, et al. Coenzyme Q10 distribution in blood is
altered in patients with fibromyalgia. Clin Biochem. 2009;42:732–5.
Di
Pierro F, Rossi A, Consensi A, Giacomelli C, Bazzichi L. Role for a
water-soluble form of CoQ10 in female subjects affected by
fibromyalgia. A preliminary study. Clin Exp Rheumatol. 2017;35 Suppl
105:20–7.
Cordero
MD, Alcocer-Gómez E, de Miguel M, Culic O, Carrión AM,
Alvarez-Suarez JM, et al. Can coenzyme q10 improve clinical and
molecular parameters in fibromyalgia? Antioxid Redox Signal.
2013;19:1356–61.
Jafari
M, Mousavi SM, Asgharzadeh A, Yazdani N. Coenzyme Q10 in the
treatment of heart failure: A systematic review of systematic
reviews. Indian Heart J. 2018;70 Suppl 1:S111–7.
DiNicolantonio
JJ, Bhutani J, McCarty MF, O’Keefe JH. Coenzyme Q10 for the
treatment of heart failure: a review of the literature. Open Heart.
2015;2:e000326.
Sanoobar
M, Dehghan P, Khalili M, Azimi A, Seifar F. Coenzyme Q10 as a
treatment for fatigue and depression in multiple sclerosis patients:
A double blind randomized clinical trial. Nutr Neurosci.
2016;19:138–43.
Sanoobar
M, Eghtesadi S, Azimi A, Khalili M, Khodadadi B, Jazayeri S, et al.
Coenzyme Q10 supplementation ameliorates inflammatory markers in
patients with multiple sclerosis: a double blind, placebo,
controlled randomized clinical trial. Nutr Neurosci. 2015;18:169–76.
Castro-Marrero
J, Cordero MD, Segundo MJ, Sáez-Francàs N, Calvo N, Román-Malo L,
et al. Does oral coenzyme Q10 plus NADH supplementation improve
fatigue and biochemical parameters in chronic fatigue syndrome?
Antioxid Redox Signal. 2015;22:679–85.
Fukuda
S, Nojima J, Kajimoto O, Yamaguti K, Nakatomi Y, Kuratsune H, et al.
Ubiquinol-10 supplementation improves autonomic nervous function and
cognitive function in chronic fatigue syndrome. Biofactors.
2016;42:431–40.
Mizuno
K, Tanaka M, Nozaki S, Mizuma H, Ataka S, Tahara T, et al.
Antifatigue effects of coenzyme Q10 during physical fatigue.
Nutrition. 2008;24:293–9.
Castro-Marrero
J, Sáez-Francàs N, Segundo MJ, Calvo N, Faro M, Aliste L, et al.
Effect of coenzyme Q10 plus nicotinamide adenine dinucleotide
supplementation on maximum heart rate after exercise testing in
chronic fatigue syndrome – A randomized, controlled, double-blind
trial. Clin Nutr. 2016;35:826–34.
Mizuno
K, Sasaki AT, Watanabe K, Watanabe Y. Ubiquinol-10 Intake Is
Effective in Relieving Mild Fatigue in Healthy Individuals.
Nutrients [Internet]. 2020;12. Available from:
http://dx.doi.org/10.3390/nu12061640
Sarmiento
A, Diaz-Castro J, Pulido-Moran M, Moreno-Fernandez J, Kajarabille N,
Chirosa I, et al. Short-term ubiquinol supplementation reduces
oxidative stress associated with strenuous exercise in healthy
adults: A randomized trial. Biofactors. 2016;42:612–22.
Shay
KP, Moreau RF, Smith EJ, Smith AR, Hagen TM. Alpha-lipoic acid as a
dietary supplement: molecular mechanisms and therapeutic potential.
Biochim Biophys Acta. 2009;1790:1149–60.
Savitha
S, Sivarajan K, Haripriya D, Kokilavani V, Panneerselvam C. Efficacy
of levo carnitine and alpha lipoic acid in ameliorating the decline
in mitochondrial enzymes during aging. Clin Nutr. 2005;24:794–800.
Long
J, Gao F, Tong L, Cotman CW, Ames BN, Liu J. Mitochondrial decay in
the brains of old rats: ameliorating effect of alpha-lipoic acid and
acetyl-L-carnitine. Neurochem Res. 2009;34:755–63.
Liu
J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative
decay: improvement of carnitine acetyltransferase substrate-binding
affinity and activity in brain by feeding old rats acetyl-L-
carnitine and/or R-alpha -lipoic acid. Proc Natl Acad Sci U S A.
2002;99:1876–81.
Pershadsingh
HA. Alpha-lipoic acid: physiologic mechanisms and indications for
the treatment of metabolic syndrome. Expert Opin Investig Drugs.
2007;16:291–302.
Chen
W-L, Kang C-H, Wang S-G, Lee H-M. α-Lipoic acid regulates lipid
metabolism through induction of sirtuin 1 (SIRT1) and activation of
AMP-activated protein kinase. Diabetologia. 2012;55:1824–35.
Carbonelli
MG, Di Renzo L, Bigioni M, Di Daniele N, De Lorenzo A, Fusco MA.
Alpha-lipoic acid supplementation: a tool for obesity therapy? Curr
Pharm Des. 2010;16:840–6.
Koh
EH, Lee WJ, Lee SA, Kim EH, Cho EH, Jeong E, et al. Effects of
alpha-lipoic Acid on body weight in obese subjects. Am J Med.
2011;124:85.e1–8.
Li
N, Yan W, Hu X, Huang Y, Wang F, Zhang W, et al. Effects of oral
α-lipoic acid administration on body weight in overweight or obese
subjects: a crossover randomized, double-blind, placebo-controlled
trial. Clin Endocrinol . 2017;86:680–7.
Breithaupt-Grögler
K, Niebch G, Schneider E, Erb K, Hermann R, Blume HH, et al.
Dose-proportionality of oral thioctic acid–coincidence of
assessments via pooled plasma and individual data. Eur J Pharm Sci.
1999;8:57–65.
Huxtable
RJ. Physiological actions of taurine. Physiol Rev. 1992;72:101–63.
Fakruddin
M, Wei F-Y, Suzuki T, Asano K, Kaieda T, Omori A, et al. Defective
Mitochondrial tRNA Taurine Modification Activates Global
Proteostress and Leads to Mitochondrial Disease. Cell Rep.
2018;22:482–96.
Hansen
SH, Andersen ML, Cornett C, Gradinaru R, Grunnet N. A role for
taurine in mitochondrial function. J Biomed Sci. 2010;17 Suppl
1:S23.
Hansen
SH, Andersen ML, Birkedal H, Cornett C, Wibrand F. The important
role of taurine in oxidative metabolism. Adv Exp Med Biol.
2006;583:129–35.
Jong
CJ, Azuma J, Schaffer S. Mechanism underlying the antioxidant
activity of taurine: prevention of mitochondrial oxidant production.
Amino Acids. 2012;42:2223–32.
Schaffer
S, Kim HW. Effects and Mechanisms of Taurine as a Therapeutic Agent.
Biomol Ther . 2018;26:225–41.
Ripps
H, Shen W. Review: taurine: a “very essential” amino acid. Mol
Vis. 2012;18:2673–86.
Maleki
V, Mahdavi R, Hajizadeh-Sharafabad F, Alizadeh M. The effects of
taurine supplementation on oxidative stress indices and inflammation
biomarkers in patients with type 2 diabetes: a randomized,
double-blind, placebo-controlled trial. Diabetol Metab Syndr.
2020;12:9.
Rosa
FT, Freitas EC, Deminice R, Jordão AA, Marchini JS. Oxidative
stress and inflammation in obesity after taurine supplementation: a
double-blind, placebo-controlled study. Eur J Nutr. 2014;53:823–30.
Xiao
C, Giacca A, Lewis GF. Oral taurine but not N-acetylcysteine
ameliorates NEFA-induced impairment in insulin sensitivity and beta
cell function in obese and overweight, non-diabetic men.
Diabetologia. 2008;51:139–46.
Waldron
M, Patterson SD, Tallent J, Jeffries O. The Effects of an Oral
Taurine Dose and Supplementation Period on Endurance Exercise
Performance in Humans: A Meta-Analysis. Sports Med. 2018;48:1247–53.
Swaminathan
R. Magnesium metabolism and its disorders. Clin Biochem Rev.
2003;24:47–66.
Igamberdiev
AU, Kleczkowski LA. Optimization of ATP synthase function in
mitochondria and chloroplasts via the adenylate kinase equilibrium.
Front Plant Sci. 2015;6:10.
Pilchova
I, Klacanova K, Tatarkova Z, Kaplan P, Racay P. The Involvement of
Mg2+ in Regulation of Cellular and Mitochondrial Functions. Oxid Med
Cell Longev. 2017;2017:6797460.
Heber
D. Pomegranate Ellagitannins. In: Benzie IFF, Wachtel-Galor S,
editors. Herbal Medicine: Biomolecular and Clinical Aspects. Boca
Raton (FL): CRC Press/Taylor & Francis; 2012.
Ismail
T, Calcabrini C, Diaz AR, Fimognari C, Turrini E, Catanzaro E, et
al. Ellagitannins in Cancer Chemoprevention and Therapy. Toxins
[Internet]. 2016;8. Available from:
http://dx.doi.org/10.3390/toxins8050151
Andreux
PA, Blanco-Bose W, Ryu D, Burdet F, Ibberson M, Aebischer P, et al.
The mitophagy activator urolithin A is safe and induces a molecular
signature of improved mitochondrial and cellular health in humans.
Nat Metab. 2019;1:595–603.
Tan
S, Yu CY, Sim ZW, Low ZS, Lee B, See F, et al. Pomegranate activates
TFEB to promote autophagy-lysosomal fitness and mitophagy. Sci Rep.
2019;9:727.
Ryu
D, Mouchiroud L, Andreux PA, Katsyuba E, Moullan N,
Nicolet-Dit-Félix AA, et al. Urolithin A induces mitophagy and
prolongs lifespan in C. elegans and increases muscle function in
rodents. Nat Med. 2016;22:879–88.
Torregrosa-García
A, Ávila-Gandía V, Luque-Rubia AJ, Abellán-Ruiz MS,
Querol-Calderón M, López-Román FJ. Pomegranate Extract Improves
Maximal Performance of Trained Cyclists after an Exhausting
Endurance Trial: A Randomised Controlled Trial. Nutrients
[Internet]. 2019;11. Available from:
http://dx.doi.org/10.3390/nu11040721
Aviram
M, Rosenblat M, Gaitini D, Nitecki S, Hoffman A, Dornfeld L, et al.
Pomegranate juice consumption for 3 years by patients with carotid
artery stenosis reduces common carotid intima-media thickness, blood
pressure and LDL oxidation. Clin Nutr. 2004;23:423–33.
Davidson
MH, Maki KC, Dicklin MR, Feinstein SB, Witchger M, Bell M, et al.
Effects of consumption of pomegranate juice on carotid intima-media
thickness in men and women at moderate risk for coronary heart
disease. Am J Cardiol. 2009;104:936–42.
Basu
A, Newman ED, Bryant AL, Lyons TJ, Betts NM. Pomegranate polyphenols
lower lipid peroxidation in adults with type 2 diabetes but have no
effects in healthy volunteers: a pilot study. J Nutr Metab.
2013;2013:708381.
Shintani
H, Ashida H, Shintani T. Shifting the focus of d-glucosamine from a
dietary supplement for knee osteoarthritis to a potential anti-aging
drug. Human Nutrition & Metabolism. 2021;26:200134.
Li
Z-H, Gao X, Chung VC, Zhong W-F, Fu Q, Lv Y-B, et al. Associations
of regular glucosamine use with all-cause and cause-specific
mortality: a large prospective cohort study. Ann Rheum Dis.
2020;79:829–36.
Ma
H, Li X, Sun D, Zhou T, Ley SH, Gustat J, et al. Association of
habitual glucosamine use with risk of cardiovascular disease:
prospective study in UK Biobank. BMJ. 2019;365:l1628.
Bell
GA, Kantor ED, Lampe JW, Shen DD, White E. Use of glucosamine and
chondroitin in relation to mortality. Eur J Epidemiol.
2012;27:593–603.
Pocobelli
G, Kristal AR, Patterson RE, Potter JD, Lampe JW, Kolar A, et al.
Total mortality risk in relation to use of less-common dietary
supplements. Am J Clin Nutr. 2010;91:1791–800.
Weimer
S, Priebs J, Kuhlow D, Groth M, Priebe S, Mansfeld J, et al.
D-Glucosamine supplementation extends life span of nematodes and of
ageing mice. Nat Commun. 2014;5:3563.
Shintani
T, Kosuge Y, Ashida H. Glucosamine Extends the Lifespan of
Caenorhabditis elegans via Autophagy Induction. J Appl Glycosci .
2018;65:37–43.
Singhal
K, Raj N, Gupta K, Singh S. Probable benefits of green tea with
genetic implications. J Oral Maxillofac Pathol. 2017;21:107–14.
Suzuki
Y, Miyoshi N, Isemura M. Health-promoting effects of green tea. Proc
Jpn Acad Ser B Phys Biol Sci. 2012;88:88–101.
Chacko
SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green
tea: a literature review. Chin Med. 2010;5:13.
Ortiz-López
L, Márquez-Valadez B, Gómez-Sánchez A, Silva-Lucero MDC,
Torres-Pérez M, Téllez-Ballesteros RI, et al. Green tea compound
epigallo-catechin-3-gallate (EGCG) increases neuronal survival in
adult hippocampal neurogenesis in vivo and in vitro. Neuroscience.
2016;322:208–20.
Pervin
M, Unno K, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Beneficial
Effects of Green Tea Catechins on Neurodegenerative Diseases.
Molecules [Internet]. 2018;23. Available from:
http://dx.doi.org/10.3390/molecules23061297
Babu
PVA, Liu D. Green tea catechins and cardiovascular health: an
update. Curr Med Chem. 2008;15:1840–50.
Bhardwaj
P, Khanna D. Green tea catechins: defensive role in cardiovascular
disorders. Chin J Nat Med. 2013;11:345–53.
Rains
TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins:
a mechanistic review. J Nutr Biochem. 2011;22:1–7.
Hursel
R, Westerterp-Plantenga MS. Catechin- and caffeine-rich teas for
control of body weight in humans. Am J Clin Nutr. 2013;98:1682S –
1693S.
Hursel
R, Viechtbauer W, Westerterp-Plantenga MS. The effects of green tea
on weight loss and weight maintenance: a meta-analysis. Int J Obes .
2009;33:956–61.
Cooper
R, Morré DJ, Morré DM. Medicinal benefits of green tea: part II.
review of anticancer properties. J Altern Complement Med.
2005;11:639–52.
Lambert
JD. Does tea prevent cancer? Evidence from laboratory and human
intervention studies. Am J Clin Nutr. 2013;98:1667S – 1675S.
Park
J-H, Bae J-H, Im S-S, Song D-K. Green tea and type 2 diabetes.
Integr Med Res. 2014;3:4–10.
Oliveira
MR de, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM. Epigallocatechin
gallate and mitochondria-A story of life and death. Pharmacol Res.
2016;104:70–85.
Schroeder
EK, Kelsey NA, Doyle J, Breed E, Bouchard RJ, Loucks FA, et al.
Green tea epigallocatechin 3-gallate accumulates in mitochondria and
displays a selective antiapoptotic effect against inducers of
mitochondrial oxidative stress in neurons. Antioxid Redox Signal.
2009;11:469–80.
Most
J, Timmers S, Warnke I, Jocken JW, van Boekschoten M, de Groot P, et
al. Combined epigallocatechin-3-gallate and resveratrol
supplementation for 12 wk increases mitochondrial capacity and fat
oxidation, but not insulin sensitivity, in obese humans: a
randomized controlled trial. Am J Clin Nutr. 2016;104:215–27.
Jurgens
TM, Whelan AM, Killian L, Doucette S, Kirk S, Foy E. Green tea for
weight loss and weight maintenance in overweight or obese adults.
Cochrane Database Syst Rev. 2012;12:CD008650.
Baladia
E, Basulto J, Manera M, Martínez R, Calbet D. [Effect of green tea
or green tea extract consumption on body weight and body
composition; systematic review and meta-analysis]. Nutr Hosp.
2014;29:479–90.
Zhong
X, Zhang T, Liu Y, Wei X, Zhang X, Qin Y, et al. Short-term
weight-centric effects of tea or tea extract in patients with
metabolic syndrome: a meta-analysis of randomized controlled trials.
Nutr Diabetes. 2015;5:e160.
Vázquez
Cisneros LC, López-Uriarte P, López-Espinoza A, Navarro Meza M,
Espinoza-Gallardo AC, Guzmán Aburto MB. Effects of green tea and
its epigallocatechin (EGCG) content on body weight and fat mass in
humans: a systematic review. Nutr Hosp. 2017;34:731–7.
Hibi
M, Takase H, Iwasaki M, Osaki N, Katsuragi Y. Efficacy of tea
catechin-rich beverages to reduce abdominal adiposity and metabolic
syndrome risks in obese and overweight subjects: a pooled analysis
of 6 human trials. Nutr Res. 2018;55:1–10.
Lee
HS, Lim S-M, Jung JI, Kim SM, Lee JK, Kim YH, et al. Gynostemma
Pentaphyllum Extract Ameliorates High-Fat Diet-Induced Obesity in
C57BL/6N Mice by Upregulating SIRT1. Nutrients [Internet]. 2019;11.
Available from: http://dx.doi.org/10.3390/nu11102475
Gauhar
R, Hwang S-L, Jeong S-S, Kim J-E, Song H, Park DC, et al.
Heat-processed Gynostemma pentaphyllum extract improves obesity in
ob/ob mice by activating AMP-activated protein kinase. Biotechnol
Lett. 2012;34:1607–16.
Nguyen
PH, Gauhar R, Hwang SL, Dao TT, Park DC, Kim JE, et al. New
dammarane-type glucosides as potential activators of AMP-activated
protein kinase (AMPK) from Gynostemma pentaphyllum. Bioorg Med Chem.
2011;19:6254–60.
Park
S-H, Huh T-L, Kim S-Y, Oh M-R, Tirupathi Pichiah PB, Chae S-W, et
al. Antiobesity effect of Gynostemma pentaphyllum extract
(actiponin): a randomized, double-blind, placebo-controlled trial.
Obesity . 2014;22:63–71.
Huyen
VTT, Phan DV, Thang P, Hoa NK, Ostenson CG. Antidiabetic effect of
Gynostemma pentaphyllum tea in randomly assigned type 2 diabetic
patients. Horm Metab Res. 2010;42:353–7.
Chou
S-C, Chen K-W, Hwang J-S, Lu W-T, Chu Y-Y, Lin J-D, et al. The
add-on effects of Gynostemma pentaphyllum on nonalcoholic fatty
liver disease. Altern Ther Health Med. 2006;12:34–9.
Singh
N, Bhalla M, de Jager P, Gilca M. An overview on ashwagandha: a
Rasayana (rejuvenator) of Ayurveda. Afr J Tradit Complement Altern
Med. 2011;8:208–13.
Pratte
MA, Nanavati KB, Young V, Morley CP. An alternative treatment for
anxiety: a systematic review of human trial results reported for the
Ayurvedic herb ashwagandha (Withania somnifera). J Altern Complement
Med. 2014;20:901–8.
Andrade
C. Ashwagandha for anxiety disorders. World J. Biol. Psychiatry.
2009. p. 686–7.
Zahiruddin
S, Basist P, Parveen A, Parveen R, Khan W, Gaurav, et al.
Ashwagandha in brain disorders: A review of recent developments. J
Ethnopharmacol. 2020;257:112876.
Lee
D-H, Ahn J, Jang Y-J, Seo H-D, Ha T-Y, Kim MJ, et al. Withania
somnifera Extract Enhances Energy Expenditure via Improving
Mitochondrial Function in Adipose Tissue and Skeletal Muscle.
Nutrients [Internet]. 2020;12. Available from:
http://dx.doi.org/10.3390/nu12020431
Lopresti
AL, Smith SJ, Malvi H, Kodgule R. An investigation into the
stress-relieving and pharmacological actions of an ashwagandha
(Withania somnifera) extract: A randomized, double-blind,
placebo-controlled study. Medicine . 2019;98:e17186.
Lopresti
AL, Drummond PD, Smith SJ. A Randomized, Double-Blind,
Placebo-Controlled, Crossover Study Examining the Hormonal and
Vitality Effects of Ashwagandha ( Withania somnifera) in Aging,
Overweight Males. Am J Mens Health. 2019;13:1557988319835985.
Deshpande
A, Irani N, Balkrishnan R, Benny IR. A randomized, double blind,
placebo controlled study to evaluate the effects of ashwagandha
(Withania somnifera) extract on sleep quality in healthy adults.
Sleep Med. 2020;72:28–36.
Salve
J, Pate S, Debnath K, Langade D. Adaptogenic and Anxiolytic Effects
of Ashwagandha Root Extract in Healthy Adults: A Double-blind,
Randomized, Placebo-controlled Clinical Study. Cureus.
2019;11:e6466.
Langade
D, Kanchi S, Salve J, Debnath K, Ambegaokar D. Efficacy and Safety
of Ashwagandha (Withania somnifera) Root Extract in Insomnia and
Anxiety: A Double-blind, Randomized, Placebo-controlled Study.
Cureus. 2019;11:e5797.
Chandrasekhar
K, Kapoor J, Anishetty S. A prospective, randomized double-blind,
placebo-controlled study of safety and efficacy of a
high-concentration full-spectrum extract of ashwagandha root in
reducing stress and anxiety in adults. Indian J Psychol Med.
2012;34:255–62.
Fuladi
S, Emami SA, Mohammadpour AH, Karimani A, Manteghi AA, Sahebkar A.
Assessment of Withania somnifera root extract efficacy in patients
with generalized anxiety disorder: A randomized double-blind
placebo-controlled trial. Curr Clin Pharmacol [Internet]. 2020;
Available from: http://dx.doi.org/10.2174/1574884715666200413120413
Li
X-T, Chen R, Jin L-M, Chen H-Y. Regulation on energy metabolism and
protection on mitochondria of Panax ginseng polysaccharide. Am J
Chin Med. 2009;37:1139–52.
Huang
Y, Kwan KKL, Leung KW, Yao P, Wang H, Dong TT, et al. Ginseng
extracts modulate mitochondrial bioenergetics of live
cardiomyoblasts: a functional comparison of different extraction
solvents. J Ginseng Res. 2019;43:517–26.
Jin
T-Y, Rong P-Q, Liang H-Y, Zhang P-P, Zheng G-Q, Lin Y. Clinical and
Preclinical Systematic Review of Panax ginseng C. A. Mey and Its
Compounds for Fatigue. Front Pharmacol. 2020;11:1031.
Lee
N, Lee S-H, Yoo H-R, Yoo HS. Anti-Fatigue Effects of Enzyme-Modified
Ginseng Extract: A Randomized, Double-Blind, Placebo-Controlled
Trial. J Altern Complement Med. 2016;22:859–64.
Kim
H-G, Cho J-H, Yoo S-R, Lee J-S, Han J-M, Lee N-H, et al. Antifatigue
Effects of Panax ginseng C.A. Meyer: A Randomised, Double-Blind,
Placebo-Controlled Trial. PLoS One [Internet]. Public Library of
Science; 2013 [cited 2019 Nov 25];8. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629193/
Chowanadisai
W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB.
Pyrroloquinoline quinone stimulates mitochondrial biogenesis through
cAMP response element-binding protein phosphorylation and increased
PGC-1alpha expression. J Biol Chem. 2010;285:142–52.
Saihara
K, Kamikubo R, Ikemoto K, Uchida K, Akagawa M. Pyrroloquinoline
Quinone, a Redox-Active o-Quinone, Stimulates Mitochondrial
Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway.
Biochemistry. 2017;56:6615–25.
Hwang
P, Willoughby DS. Mechanisms Behind Pyrroloquinoline Quinone
Supplementation on Skeletal Muscle Mitochondrial Biogenesis:
Possible Synergistic Effects with Exercise. J Am Coll Nutr.
2018;37:738–48.
Nakano
M, Yamamoto T, Okamura H, Tsuda A, Kowatari Y. Effects of Oral
Supplementation with Pyrroloquinoline Quinone on Stress, Fatigue,
and Sleep. Functional Foods in Health and Disease. 2012;2:307–24.
Harris
CB, Chowanadisai W, Mishchuk DO, Satre MA, Slupsky CM, Rucker RB.
Dietary pyrroloquinoline quinone (PQQ) alters indicators of
inflammation and mitochondrial-related metabolism in human subjects.
J Nutr Biochem. 2013;24:2076–84.
Zhong
Z, Han J, Zhang J, Xiao Q, Hu J, Chen L. Pharmacological activities,
mechanisms of action, and safety of salidroside in the central
nervous system. Drug Des Devel Ther. 2018;12:1479–89.
Ma
G-P, Zheng Q, Xu M-B, Zhou X-L, Lu L, Li Z-X, et al. Rhodiola rosea
L. Improves Learning and Memory Function: Preclinical Evidence and
Possible Mechanisms. Front Pharmacol. 2018;9:1415.
Li
Y, Pham V, Bui M, Song L, Wu C, Walia A, et al. Rhodiola rosea L.:
an herb with anti-stress, anti-aging, and immunostimulating
properties for cancer chemoprevention. Curr Pharmacol Rep.
2017;3:384–95.
Edwards
D, Heufelder A, Zimmermann A. Therapeutic effects and safety of
Rhodiola rosea extract WS® 1375 in subjects with life-stress
symptoms–results of an open-label study. Phytother Res.
2012;26:1220–5.
Kasper
S, Dienel A. Multicenter, open-label, exploratory clinical trial
with Rhodiola rosea extract in patients suffering from burnout
symptoms. Neuropsychiatr Dis Treat. 2017;13:889–98.
Lekomtseva
Y, Zhukova I, Wacker A. Rhodiola rosea in Subjects with Prolonged or
Chronic Fatigue Symptoms: Results of an Open-Label Clinical Trial.
Complement Med Res. 2017;24:46–52.
Spasov
AA, Wikman GK, Mandrikov VB, Mironova IA, Neumoin VV. A
double-blind, placebo-controlled pilot study of the stimulating and
adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of
students caused by stress during an examination period with a
repeated low-dose regimen. Phytomedicine. 2000;7:85–9.
Shevtsov
VA, Zholus BI, Shervarly VI, Vol’skij VB, Korovin YP, Khristich
MP, et al. A randomized trial of two different doses of a SHR-5
Rhodiola rosea extract versus placebo and control of capacity for
mental work. Phytomedicine. 2003;10:95–105.
Olsson
EM, von Schéele B, Panossian AG. A randomised, double-blind,
placebo-controlled, parallel-group study of the standardised extract
shr-5 of the roots of Rhodiola rosea in the treatment of subjects
with stress-related fatigue. Planta Med. 2009;75:105–12.
Cropley
M, Banks AP, Boyle J. The Effects of Rhodiola rosea L. Extract on
Anxiety, Stress, Cognition and Other Mood Symptoms. Phytother Res.
2015;29:1934–9.
Darbinyan
V, Aslanyan G, Amroyan E, Gabrielyan E, Malmström C, Panossian A.
Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment
of mild to moderate depression. Nord J Psychiatry. 2007;61:343–8.
Bangratz
M, Ait Abdellah S, Berlin A, Blondeau C, Guilbot A, Dubourdeaux M,
et al. A preliminary assessment of a combination of rhodiola and
saffron in the management of mild-moderate depression.
Neuropsychiatr Dis Treat. 2018;14:1821–9.
Sabaratnam
V, Kah-Hui W, Naidu M, Rosie David P. Neuronal health – can
culinary and medicinal mushrooms help? Afr J Tradit Complement
Altern Med. 2013;3:62–8.
Lai
P-L, Naidu M, Sabaratnam V, Wong K-H, David RP, Kuppusamy UR, et al.
Neurotrophic properties of the Lion’s mane medicinal mushroom,
Hericium erinaceus (Higher Basidiomycetes) from Malaysia. Int J Med
Mushrooms. 2013;15:539–54.
Kawagishi
H, Shimada A, Shirai R, Okamoto K, Ojima F, Sakamoto H, et al.
Erinacines A, B and C, strong stimulators of nerve growth factor
(NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron
Lett. 1994;35:1569–72.
Kawagishi
H, Simada A, Shizuki K, Ojima F, Mori H, Okamoto K, et al. ERINACINE
D, A STIMULATOR OF NGF-SYNTHESIS, FROM THE MYCELIA OF HERICIUM
ERINACEUM. Heterocycl Commun. 1996;2:4561.
Mori
K, Obara Y, Hirota M, Azumi Y, Kinugasa S, Inatomi S, et al. Nerve
growth factor-inducing activity of Hericium erinaceus in 1321N1
human astrocytoma cells. Biol Pharm Bull. 2008;31:1727–32.
Aloe
L, Rocco ML, Balzamino BO, Micera A. Nerve Growth Factor: A Focus on
Neuroscience and Therapy. Curr Neuropharmacol. 2015;13:294–303.
Chiu
C-H, Chyau C-C, Chen C-C, Lee L-Y, Chen W-P, Liu J-L, et al.
Erinacine A-Enriched Hericium erinaceus Mycelium Produces
Antidepressant-Like Effects through Modulating BDNF/PI3K/Akt/GSK-3β
Signaling in Mice. Int J Mol Sci [Internet]. 2018;19. Available
from: http://dx.doi.org/10.3390/ijms19020341
Kowiański
P, Lietzau G, Czuba E, Waśkow M, Steliga A, Moryś J. BDNF: A Key
Factor with Multipotent Impact on Brain Signaling and Synaptic
Plasticity. Cell Mol Neurobiol. 2018;38:579–93.
Yao
W, Zhang J-C, Dong C, Zhuang C, Hirota S, Inanaga K, et al. Effects
of amycenone on serum levels of tumor necrosis factor-α,
interleukin-10, and depression-like behavior in mice after
lipopolysaccharide administration. Pharmacol Biochem Behav.
2015;136:7–12.
Mori
K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Improving effects of the
mushroom Yamabushitake (Hericium erinaceus) on mild cognitive
impairment: a double-blind placebo-controlled clinical trial.
Phytother Res. 2009;23:367–72.
Vigna
L, Morelli F, Agnelli GM, Napolitano F, Ratto D, Occhinegro A, et
al. Hericium erinaceus Improves Mood and Sleep Disorders in Patients
Affected by Overweight or Obesity: Could Circulating Pro-BDNF and
BDNF Be Potential Biomarkers? Evid Based Complement Alternat Med.
2019;2019:7861297.
Abbiati
G, Fossati T, Lachmann G, Bergamaschi M, Castiglioni C. Absorption,
tissue distribution and excretion of radiolabelled compounds in rats
after administration of [14C]-L-alpha-glycerylphosphorylcholine. Eur
J Drug Metab Pharmacokinet. 1993;18:173–80.
Chin
EWM, Goh ELK. Modulating neuronal plasticity with choline. Neural
Regeneration Res. 2019;14:1697–8.
Blusztajn
JK, Slack BE, Mellott TJ. Neuroprotective Actions of Dietary
Choline. Nutrients [Internet]. 2017;9. Available from:
http://dx.doi.org/10.3390/nu9080815
Parnetti
L, Mignini F, Tomassoni D, Traini E, Amenta F. Cholinergic
precursors in the treatment of cognitive impairment of vascular
origin: ineffective approaches or need for re-evaluation? J Neurol
Sci. 2007;257:264–9.
Galletti
P, De Rosa M, Nappi MA, Pontoni G, del Piano L, Salluzzo A, et al.
Transport and metabolism of double-labelled CDPcholine in mammalian
tissues. Biochem Pharmacol. 1985;34:4121–30.
Gibellini
F, Smith TK. The Kennedy pathway–De novo synthesis of
phosphatidylethanolamine and phosphatidylcholine. IUBMB Life.
2010;62:414–28.
Babb
SM, Appelmans KE, Renshaw PF, Wurtman RJ, Cohen BM. Differential
effect of CDP-choline on brain cytosolic choline levels in younger
and older subjects as measured by proton magnetic resonance
spectroscopy. Psychopharmacology . 1996;127:88–94.
Babb
SM, Wald LL, Cohen BM, Villafuerte RA, Gruber SA, Yurgelun-Todd DA,
et al. Chronic citicoline increases phosphodiesters in the brains of
healthy older subjects: an in vivo phosphorus magnetic resonance
spectroscopy study. Psychopharmacology . 2002;161:248–54.
Fioravanti
M, Yanagi M. Cytidinediphosphocholine (CDP-choline) for cognitive
and behavioural disturbances associated with chronic cerebral
disorders in the elderly. Cochrane Database Syst Rev. 2005;CD000269.
Castagna
A, Cotroneo AM, Ruotolo G, Gareri P. The CITIRIVAD Study: CITIcoline
plus RIVAstigmine in Elderly Patients Affected with Dementia Study.
Clin Drug Investig. 2016;36:1059–65.
Gareri
P, Castagna A, Cotroneo AM, Putignano D, Conforti R, Santamaria F,
et al. The Citicholinage Study: Citicoline Plus Cholinesterase
Inhibitors in Aged Patients Affected with Alzheimer’s Disease
Study. J Alzheimers Dis. 2017;56:557–65.
McGlade
E, Agoston AM, DiMuzio J, Kizaki M, Nakazaki E, Kamiya T, et al. The
Effect of Citicoline Supplementation on Motor Speed and Attention in
Adolescent Males. J Atten Disord. 2019;23:121–34.
McGlade
E, Locatelli A, Hardy J, Kamiya T, Morita M, Morishita K, et al.
Improved Attentional Performance Following Citicoline Administration
in Healthy Adult Women. FNS. 2012;03:769–73.
Abdul
Manap AS, Vijayabalan S, Madhavan P, Chia YY, Arya A, Wong EH, et
al. Bacopa monnieri, a Neuroprotective Lead in Alzheimer Disease: A
Review on Its Properties, Mechanisms of Action, and Preclinical and
Clinical Studies. Drug Target Insights. 2019;13:1177392819866412.
Dubey
T, Chinnathambi S. Brahmi (Bacopa monnieri): An ayurvedic herb
against the Alzheimer’s disease. Arch Biochem Biophys.
2019;676:108153.
Kwon
HJ, Jung HY, Hahn KR, Kim W, Kim JW, Yoo DY, et al. extract improves
novel object recognition, cell proliferation, neuroblast
differentiation, brain-derived neurotrophic factor, and
phosphorylation of cAMP response element-binding protein in the
dentate gyrus. Lab Anim Res. 2018;34:239–47.
Chaudhari
KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive Effect of
Nootropic Drug () in Alzheimer’s Disease. Ann Neurosci.
2017;24:111–22.
Aguiar
S, Borowski T. Neuropharmacological review of the nootropic herb
Bacopa monnieri. Rejuvenation Res. 2013;16:313–26.
Peth-Nui
T, Wattanathorn J, Muchimapura S, Tong-Un T, Piyavhatkul N,
Rangseekajee P, et al. Effects of 12-Week Bacopa monnieri
Consumption on Attention, Cognitive Processing, Working Memory, and
Functions of Both Cholinergic and Monoaminergic Systems in Healthy
Elderly Volunteers. Evid Based Complement Alternat Med.
2012;2012:606424.
Calabrese
C, Gregory WL, Leo M, Kraemer D, Bone K, Oken B. Effects of a
standardized Bacopa monnieri extract on cognitive performance,
anxiety, and depression in the elderly: a randomized, double-blind,
placebo-controlled trial. J Altern Complement Med. 2008;14:707–13.
Morgan
A, Stevens J. Does Bacopa monnieri improve memory performance in
older persons? Results of a randomized, placebo-controlled,
double-blind trial. J Altern Complement Med. 2010;16:753–9.
Stough
C, Lloyd J, Clarke J, Downey LA, Hutchison CW, Rodgers T, et al. The
chronic effects of an extract of Bacopa monniera (Brahmi) on
cognitive function in healthy human subjects. Psychopharmacology .
2001;156:481–4.
Stough
C, Downey LA, Lloyd J, Silber B, Redman S, Hutchison C, et al.
Examining the nootropic effects of a special extract of Bacopa
monniera on human cognitive functioning: 90 day double-blind
placebo-controlled randomized trial. Phytother Res. 2008;22:1629–34.
Kumar
N, Abichandani LG, Thawani V, Gharpure KJ, Naidu MUR, Venkat Ramana
G. Efficacy of Standardized Extract of Bacopa monnieri (Bacognize®)
on Cognitive Functions of Medical Students: A Six-Week, Randomized
Placebo-Controlled Trial. Evid Based Complement Alternat Med.
2016;2016:4103423.
Goswami
S, Kumar N, Thawani V, Tiwari M, Thawani M, Others. Effect of Bacopa
monnieri on cognitive functions in Alzheimer’s disease patients.
International Journal of Collaborative Research on Internal Medicine
& Public Health. Longdom Publishing SL; 2011;3:0–0.
Singh
SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G.
Neuroprotective and Antioxidant Effect of Ginkgo biloba Extract
Against AD and Other Neurological Disorders. Neurotherapeutics.
2019;16:666–74.
Yuan
Q, Wang C-W, Shi J, Lin Z-X. Effects of Ginkgo biloba on dementia:
An overview of systematic reviews. J Ethnopharmacol. 2017;195:1–9.
Liu
H, Ye M, Guo H. An Updated Review of Randomized Clinical Trials
Testing the Improvement of Cognitive Function of Ginkgo biloba
Extract in Healthy People and Alzheimer’s Patients. Front
Pharmacol. 2019;10:1688.
Mullen
W, Nemzer B, Ou B, Stalmach A, Hunter J, Clifford MN, et al. The
antioxidant and chlorogenic acid profiles of whole coffee fruits are
influenced by the extraction procedures. J Agric Food Chem.
2011;59:3754–62.
Duangjai
A, Suphrom N, Wungrath J, Ontawong A, Nuengchamnong N, Yosboonruang
A. Comparison of antioxidant, antimicrobial activities and chemical
profiles of three coffee (Coffea arabica L.) pulp aqueous extracts.
Integr Med Res. 2016;5:324–31.
Reyes-Izquierdo
T, Nemzer B, Shu C, Huynh L, Argumedo R, Keller R, et al. Modulatory
effect of coffee fruit extract on plasma levels of brain-derived
neurotrophic factor in healthy subjects. Br J Nutr. 2013;110:420–5.
Reyes-Izquierdo
T, Argumedo R, Shu C, Nemzer B, Pietrzkowski Z. Stimulatory Effect
of Whole Coffee Fruit Concentrate Powder on Plasma Levels of Total
and Exosomal Brain-Derived Neurotrophic Factor in Healthy Subjects:
An Acute Within-Subject Clinical Study. FNS. 2013;04:984–90.
Calabrese
F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R. Brain-derived
neurotrophic factor: a bridge between inflammation and
neuroplasticity. Front Cell Neurosci. 2014;8:430.
Rossi
C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, et
al. Brain-derived neurotrophic factor (BDNF) is required for the
enhancement of hippocampal neurogenesis following environmental
enrichment. Eur J Neurosci. 2006;24:1850–6.
Cohen-Cory
S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic
factor and the development of structural neuronal connectivity. Dev
Neurobiol. 2010;70:271–88.
Bekinschtein
P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, et al.
BDNF is essential to promote persistence of long-term memory
storage. Proc Natl Acad Sci U S A. 2008;105:2711–6.
Chen
S-D, Wu C-L, Hwang W-C, Yang D-I. More Insight into BDNF against
Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression
of Autophagy. Int J Mol Sci [Internet]. 2017;18. Available from:
http://dx.doi.org/10.3390/ijms18030545
Dos
Santos TC, Gomes TM, Pinto BAS, Camara AL, Paes AM de A. Naturally
Occurring Acetylcholinesterase Inhibitors and Their Potential Use
for Alzheimer’s Disease Therapy. Front Pharmacol. 2018;9:1192.
Yang
G, Wang Y, Tian J, Liu J-P. Huperzine A for Alzheimer’s disease: a
systematic review and meta-analysis of randomized clinical trials.
PLoS One. 2013;8:e74916.
Xing
S-H, Zhu C-X, Zhang R, An L. Huperzine a in the treatment of
Alzheimer’s disease and vascular dementia: a meta-analysis. Evid
Based Complement Alternat Med. 2014;2014:363985.
Zheng
W, Xiang Y-Q, Ungvari GS, Chiu FKH, H Ng C, Wang Y, et al. Huperzine
A for treatment of cognitive impairment in major depressive
disorder: a systematic review of randomized controlled trials.
Shanghai Arch Psychiatry. 2016;28:64–71.
Nicassio
L, Fracasso F, Sirago G, Musicco C, Picca A, Marzetti E, et al.
Dietary supplementation with acetyl-l-carnitine counteracts
age-related alterations of mitochondrial biogenesis, dynamics and
antioxidant defenses in brain of old rats. Exp Gerontol.
2017;98:99–109.
Smeland
OB, Meisingset TW, Borges K, Sonnewald U. Chronic acetyl-L-carnitine
alters brain energy metabolism and increases noradrenaline and
serotonin content in healthy mice. Neurochem Int. 2012;61:100–7.
Kobayashi
S, Iwamoto M, Kon K, Waki H, Ando S, Tanaka Y. Acetyl-L-carnitine
improves aged brain function. Geriatr Gerontol Int. 2010;10 Suppl
1:S99–106.
Aliev
G, Liu J, Shenk JC, Fischbach K, Pacheco GJ, Chen SG, et al.
Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine
and lipoic acid to aged rats. J Cell Mol Med. 2009;13:320–33.
Parnetti
L, Gaiti A, Mecocci P, Cadini D, Senin U. Pharmacokinetics of IV and
oral acetyl-L-carnitine in a multiple dose regimen in patients with
senile dementia of Alzheimer type. Eur J Clin Pharmacol.
1992;42:89–93.
Cristofano
A, Sapere N, La Marca G, Angiolillo A, Vitale M, Corbi G, et al.
Serum Levels of Acyl-Carnitines along the Continuum from Normal to
Alzheimer’s Dementia. PLoS One. 2016;11:e0155694.
Montgomery
SA, Thal LJ, Amrein R. Meta-analysis of double blind randomized
controlled clinical trials of acetyl-L-carnitine versus placebo in
the treatment of mild cognitive impairment and mild Alzheimer’s
disease. Int Clin Psychopharmacol. 2003;18:61–71.
Malaguarnera
M, Gargante MP, Cristaldi E, Colonna V, Messano M, Koverech A, et
al. Acetyl L-carnitine (ALC) treatment in elderly patients with
fatigue. Arch Gerontol Geriatr. 2008;46:181–90.
Veronese
N, Stubbs B, Solmi M, Ajnakina O, Carvalho AF, Maggi S.
Acetyl-L-Carnitine Supplementation and the Treatment of Depressive
Symptoms: A Systematic Review and Meta-Analysis. Psychosom Med.
2018;80:154–9.
Hausenblas
HA, Saha D, Dubyak PJ, Anton SD. Saffron (Crocus sativus L.) and
major depressive disorder: a meta-analysis of randomized clinical
trials. J Integr Med. 2013;11:377–83.
Yang
X, Chen X, Fu Y, Luo Q, Du L, Qiu H, et al. Comparative efficacy and
safety of Crocus sativus L. for treating mild to moderate major
depressive disorder in adults: a meta-analysis of randomized
controlled trials. Neuropsychiatr Dis Treat. 2018;14:1297–305.
Khaksarian
M, Behzadifar M, Behzadifar M, Alipour M, Jahanpanah F, Re TS, et
al. The efficacy of Crocus sativus (Saffron) versus placebo and
Fluoxetine in treating depression: a systematic review and
meta-analysis. Psychol Res Behav Manag. 2019;12:297–305.
Esalatmanesh
S, Biuseh M, Noorbala AA, Mostafavi S-A, Rezaei F, Mesgarpour B, et
al. Comparison of Saffron and Fluvoxamine in the Treatment of Mild
to Moderate Obsessive-Compulsive Disorder: A Double Blind Randomized
Clinical Trial. Iran J Psychiatry. 2017;12:154–62.
Akhondzadeh
S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, et
al. Saffron in the treatment of patients with mild to moderate
Alzheimer’s disease: a 16-week, randomized and placebo-controlled
trial. J Clin Pharm Ther. 2010;35:581–8.
Akhondzadeh
S, Shafiee Sabet M, Harirchian MH, Togha M, Cheraghmakani H, Razeghi
S, et al. A 22-week, multicenter, randomized, double-blind
controlled trial of Crocus sativus in the treatment of
mild-to-moderate Alzheimer’s disease. Psychopharmacology .
2010;207:637–43.
Kakuda
T. Neuroprotective effects of theanine and its preventive effects on
cognitive dysfunction. Pharmacol Res. 2011;64:162–8.
Yamada
T, Terashima T, Okubo T, Juneja LR, Yokogoshi H. Effects of
theanine, r-glutamylethylamide, on neurotransmitter release and its
relationship with glutamic acid neurotransmission. Nutr Neurosci.
2005;8:219–26.
Kobayashi
K, Nagato Y, Aoi N, Juneja LR, Kim M, Yamamoto T, et al. Effects of
L-theanine on the release of alpha-brain waves in human volunteers.
Journal of the Agricultural Chemical Society of Japan (Japan)
[Internet]. 1998; Available from:
http://agris.fao.org/agris-search/search.do?recordID=JP1998003883
Juneja
LR, Chu D-C, Okubo T, Nagato Y, Yokogoshi H. L-theanine—a unique
amino acid of green tea and its relaxation effect in humans. Trends
Food Sci Technol. 1999;10:199–204.
Nobre
AC, Rao A, Owen GN. L-theanine, a natural constituent in tea, and
its effect on mental state. Asia Pac J Clin Nutr. 2008;17 Suppl
1:167–8.
Gomez-Ramirez
M, Kelly SP, Montesi JL, Foxe JJ. The effects of L-theanine on
alpha-band oscillatory brain activity during a visuo-spatial
attention task. Brain Topogr. 2009;22:44–51.
Higashiyama
A, Htay HH, Ozeki M, Juneja LR, Kapoor MP. Effects of l-theanine on
attention and reaction time response. J Funct Foods. 2011;3:171–8.
Dietz
C, Dekker M. Effect of Green Tea Phytochemicals on Mood and
Cognition. Curr Pharm Des. 2017;23:2876–905.
Williams
JL, Everett JM, D’Cunha NM, Sergi D, Georgousopoulou EN, Keegan
RJ, et al. The Effects of Green Tea Amino Acid L-Theanine
Consumption on the Ability to Manage Stress and Anxiety Levels: a
Systematic Review. Plant Foods Hum Nutr. 2020;75:12–23.
Uzbay
TI. The pharmacological importance of agmatine in the brain.
Neurosci Biobehav Rev. 2012;36:502–19.
Shopsin
B. The clinical antidepressant effect of exogenous agmatine is not
reversed by parachlorophenylalanine: a pilot study. Acta
Neuropsychiatr. 2013;25:113–8.
Keynan
O, Mirovsky Y, Dekel S, Gilad VH, Gilad GM. Safety and Efficacy of
Dietary Agmatine Sulfate in Lumbar Disc-associated Radiculopathy. An
Open-label, Dose-escalating Study Followed by a Randomized,
Double-blind, Placebo-controlled Trial. Pain Med. 2010;11:356–68.
May
BH, Lu C, Lu Y, Zhang AL, Xue CCL. Chinese herbs for memory
disorders: a review and systematic analysis of classical herbal
literature. J Acupunct Meridian Stud. 2013;6:2–11.
Park
CH, Choi SH, Koo J-W, Seo J-H, Kim H-S, Jeong S-J, et al. Novel
cognitive improving and neuroprotective activities of Polygala
tenuifolia Willdenow extract, BT-11. J Neurosci Res. 2002;70:484–92.
Li
Z, Liu Y, Wang L, Liu X, Chang Q, Guo Z, et al. Memory-Enhancing
Effects of the Crude Extract of Polygala tenuifolia on Aged Mice.
Evid Based Complement Alternat Med. 2014;2014:392324.
Xue
W, Hu J-F, Yuan Y-H, Sun J-D, Li B-Y, Zhang D-M, et al.
Polygalasaponin XXXII from Polygala tenuifolia root improves
hippocampal-dependent learning and memory. Acta Pharmacol Sin.
2009;30:1211–9.
Park
H-J, Lee K, Heo H, Lee M, Kim JW, Whang WW, et al. Effects of
Polygala tenuifolia root extract on proliferation of neural stem
cells in the hippocampal CA1 region. Phytother Res. 2008;22:1324–9.
Lee
J-Y, Kim KY, Shin KY, Won BY, Jung HY, Suh Y-H. Effects of BT-11 on
memory in healthy humans. Neurosci Lett. 2009;454:111–4.
Shin
KY, Lee J-Y, Won BY, Jung HY, Chang K-A, Koppula S, et al. BT-11 is
effective for enhancing cognitive functions in the elderly humans.
Neurosci Lett. 2009;465:157–9.
Fernstrom
JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine
synthesis and function in the brain. J Nutr. 2007;137:1539S –
1547S; discussion 1548S.
Goldstein
DS. Catecholamines 101. Clin Auton Res. 2010;20:331–52.
Lehnert
H, Reinstein DK, Strowbridge BW, Wurtman RJ. Neurochemical and
behavioral consequences of acute, uncontrollable stress: effects of
dietary tyrosine. Brain Res. 1984;303:215–23.
Hase
A, Jung SE, aan het Rot M. Behavioral and cognitive effects of
tyrosine intake in healthy human adults. Pharmacol Biochem Behav.
2015;133:1–6.
Jongkees
BJ, Hommel B, Kühn S, Colzato LS. Effect of tyrosine
supplementation on clinical and healthy populations under stress or
cognitive demands–A review. J Psychiatr Res. 2015;70:50–7.
Neri
DF, Wiegmann D, Stanny RR, Shappell SA, McCardie A, McKay DL. The
effects of tyrosine on cognitive performance during extended
wakefulness. Aviat Space Environ Med. 1995;66:313–9.
Deijen
JB, Wientjes CJ, Vullinghs HF, Cloin PA, Langefeld JJ. Tyrosine
improves cognitive performance and reduces blood pressure in cadets
after one week of a combat training course. Brain Res Bull.
1999;48:203–9.
Mahoney
CR, Castellani J, Kramer FM, Young A, Lieberman HR. Tyrosine
supplementation mitigates working memory decrements during cold
exposure. Physiol Behav. 2007;92:575–82.
Swaminathan
R. Magnesium metabolism and its disorders. Clin Biochem Rev.
2003;24:47–66.
Clerc
P, Young CA, Bordt EA, Grigore AM, Fiskum G, Polster BM. Magnesium
sulfate protects against the bioenergetic consequences of chronic
glutamate receptor stimulation. PLoS One. 2013;8:e79982.
Lambuk
L, Jafri AJA, Arfuzir NNN, Iezhitsa I, Agarwal R, Rozali KNB, et al.
Neuroprotective Effect of Magnesium Acetyltaurate Against
NMDA-Induced Excitotoxicity in Rat Retina. Neurotox Res.
2017;31:31–45.
Kirkland
AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological
Disorders. Nutrients [Internet]. 2018;10. Available from:
http://dx.doi.org/10.3390/nu10060730
Uysal
N, Kizildag S, Yuce Z, Guvendi G, Kandis S, Koc B, et al. Timeline
(Bioavailability) of Magnesium Compounds in Hours: Which Magnesium
Compound Works Best? Biol Trace Elem Res. 2019;187:128–36.
Bayliak
MM, Lushchak VI. Pleiotropic effects of alpha-ketoglutarate as a
potential anti-ageing agent. Ageing Res Rev. 2021;66:101237.
Wu
N, Yang M, Gaur U, Xu H, Yao Y, Li D. Alpha-Ketoglutarate:
Physiological Functions and Applications. Biomol Ther . 2016;24:1–8.
Harrison
AP, Pierzynowski SG. Biological effects of 2-oxoglutarate with
particular emphasis on the regulation of protein, mineral and lipid
absorption/metabolism, muscle performance, kidney function, bone
formation and cancerogenesis, all viewed from a healthy ageing
perspective state of the art–review article. J Physiol Pharmacol.
2008;59 Suppl 1:91–106.
Christensen
BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, et al.
Aging and environmental exposures alter tissue-specific DNA
methylation dependent upon CpG island context. PLoS Genet.
2009;5:e1000602.
Karemaker
ID, Vermeulen M. ZBTB2 reads unmethylated CpG island promoters and
regulates embryonic stem cell differentiation. EMBO Rep [Internet].
2018;19. Available from: http://dx.doi.org/10.15252/embr.201744993
Yang
Q, Liang X, Sun X, Zhang L, Fu X, Rogers CJ, et al.
AMPK/α-Ketoglutarate Axis Dynamically Mediates DNA Demethylation in
the Prdm16 Promoter and Brown Adipogenesis. Cell Metab.
2016;24:542–54.
Asadi
Shahmirzadi A, Edgar D, Liao C-Y, Hsu Y-M, Lucanic M, Asadi
Shahmirzadi A, et al. Alpha-Ketoglutarate, an Endogenous Metabolite,
Extends Lifespan and Compresses Morbidity in Aging Mice. Cell Metab.
2020;32:447–56.e6.
Wang
Y, Deng P, Liu Y, Wu Y, Chen Y, Guo Y, et al. Alpha-ketoglutarate
ameliorates age-related osteoporosis via regulating histone
methylations. Nat Commun. 2020;11:5596.
Demidenko
O, Barardo D, Budovskii V, Finnemore R, Palmer FR, Kennedy BK, et
al. Rejuvant®, a potential life-extending compound formulation with
alpha-ketoglutarate and vitamins, conferred an average 8 year
reduction in biological aging, after an average of 7 months of use,
in the TruAge DNA methylation test. Aging . 2021;13:24485–99.
Fransquet
PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic
clock as a predictor of disease and mortality risk: a systematic
review and meta-analysis. Clin Epigenetics. 2019;11:62.
Chen
BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai P-C,
et al. DNA methylation-based measures of biological age:
meta-analysis predicting time to death. Aging . 2016;8:1844–65.
Marioni
RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA
methylation age of blood predicts all-cause mortality in later life.
Genome Biol. 2015;16:25.
Miller
RA, Harrison DE, Astle CM, Bogue MA, Brind J, Fernandez E, et al.
Glycine supplementation extends lifespan of male and female mice.
Aging Cell. 2019;18:e12953.
Brind
J, Malloy V, Augie I, Caliendo N, Vogelman JH, Zimmerman JA, et al.
Dietary glycine supplementation mimics lifespan extension by dietary
methionine restriction in Fisher 344 rats. FASEB J [Internet].
Wiley; 2011;25. Available from:
https://onlinelibrary.wiley.com/doi/10.1096/fasebj.25.1_supplement.528.2
Liu
YJ, Janssens GE, McIntyre RL, Molenaars M, Kamble R, Gao AW, et al.
Glycine promotes longevity in Caenorhabditis elegans in a methionine
cycle-dependent fashion. PLoS Genet. 2019;15:e1007633.
Obata
F, Miura M. Enhancing S-adenosyl-methionine catabolism extends
Drosophila lifespan. Nat Commun. 2015;6:8332.
Luka
Z, Mudd SH, Wagner C. Glycine N-methyltransferase and regulation of
S-adenosylmethionine levels. J Biol Chem. 2009;284:22507–11.
Sugiyama
K, Kushima Y, Muramatsu K. Effect of dietary glycine on methionine
metabolism in rats fed a high-methionine diet. J Nutr Sci Vitaminol
. 1987;33:195–205.
Salameh
Y, Bejaoui Y, El Hajj N. DNA Methylation Biomarkers in Aging and
Age-Related Diseases. Front Genet. 2020;11:171.
Ruiz-Ramírez
A, Ortiz-Balderas E, Cardozo-Saldaña G, Diaz-Diaz E, El-Hafidi M.
Glycine restores glutathione and protects against oxidative stress
in vascular tissue from sucrose-fed rats. Clin Sci . 2014;126:19–29.
Sekhar
RV, Patel SG, Guthikonda AP, Reid M, Balasubramanyam A, Taffet GE,
et al. Deficient synthesis of glutathione underlies oxidative stress
in aging and can be corrected by dietary cysteine and glycine
supplementation. Am J Clin Nutr. 2011;94:847–53.
Zhong
Z, Wheeler MD, Li X, Froh M, Schemmer P, Yin M, et al. L-Glycine: a
novel antiinflammatory, immunomodulatory, and cytoprotective agent.
Curr Opin Clin Nutr Metab Care. 2003;6:229–40.
Gheller
BJ, Blum JE, Lim EW, Handzlik MK, Hannah Fong EH, Ko AC, et al.
Extracellular serine and glycine are required for mouse and human
skeletal muscle stem and progenitor cell function. Mol Metab.
2021;43:101106.
Lin
C, Han G, Ning H, Song J, Ran N, Yi X, et al. Glycine Enhances
Satellite Cell Proliferation, Cell Transplantation, and
Oligonucleotide Efficacy in Dystrophic Muscle. Mol Ther.
2020;28:1339–58.
Shintani
H, Ashida H, Shintani T. Shifting the focus of d-glucosamine from a
dietary supplement for knee osteoarthritis to a potential anti-aging
drug. Human Nutrition & Metabolism. 2021;26:200134.
Li
Z-H, Gao X, Chung VC, Zhong W-F, Fu Q, Lv Y-B, et al. Associations
of regular glucosamine use with all-cause and cause-specific
mortality: a large prospective cohort study. Ann Rheum Dis.
2020;79:829–36.
Ma
H, Li X, Sun D, Zhou T, Ley SH, Gustat J, et al. Association of
habitual glucosamine use with risk of cardiovascular disease:
prospective study in UK Biobank. BMJ. 2019;365:l1628.
Bell
GA, Kantor ED, Lampe JW, Shen DD, White E. Use of glucosamine and
chondroitin in relation to mortality. Eur J Epidemiol.
2012;27:593–603.
Pocobelli
G, Kristal AR, Patterson RE, Potter JD, Lampe JW, Kolar A, et al.
Total mortality risk in relation to use of less-common dietary
supplements. Am J Clin Nutr. 2010;91:1791–800.
Weimer
S, Priebs J, Kuhlow D, Groth M, Priebe S, Mansfeld J, et al.
D-Glucosamine supplementation extends life span of nematodes and of
ageing mice. Nat Commun. 2014;5:3563.
Henrotin
Y, Mobasheri A, Marty M. Is there any scientific evidence for the
use of glucosamine in the management of human osteoarthritis?
Arthritis Res Ther. 2012;14:201.
Yang
W, Sun C, He SQ, Chen JY, Wang Y, Zhuo Q. The Efficacy and Safety of
Disease-Modifying Osteoarthritis Drugs for Knee and Hip
Osteoarthritis-a Systematic Review and Network Meta-Analysis. J Gen
Intern Med. 2021;36:2085–93.
Schumacher
B, Pothof J, Vijg J, Hoeijmakers JHJ. The central role of DNA damage
in the ageing process. Nature. 2021;592:695–703.
Åkesson
C, Lindgren H, Pero RW, Leanderson T, Ivars F. Quinic acid is a
biologically active component of the Uncaria tomentosa extract C-Med
100® [Internet]. International Immunopharmacology. 2005. p. 219–29.
Available from: http://dx.doi.org/10.1016/j.intimp.2004.09.028
Pero,
Lund. In vivo treatment of humans with quinic acid enhances DNA
repair and reduces the influence of lifestyle factors on risk to
disease. Int J Biotechnol Biochem [Internet]. Available from:
https://dna-360.com/pdf/ac11_research_peroquinmax.pdf
Sheng
Y, Li L, Holmgren K, Pero RW. DNA repair enhancement of aqueous
extracts of Uncaria tomentosa in a human volunteer study.
Phytomedicine. 2001;8:275–82.
Pero
RW, Giampapa V, Vojdani A. Comparison of a Broad Spectrum Anti-Aging
Nutritional Supplement with and without the Addition of a DNA Repair
Enhancing Cat’s Claw Extract. J Anti Aging Med. Mary Ann Liebert,
Inc., publishers; 2002;5:345–53.
Sheng
Y, Bryngelsson C, Pero RW. Enhanced DNA repair, immune function and
reduced toxicity of C-MED-100TM, a novel aqueous extract from
Uncaria tomentosa. J Ethnopharmacol. 2000;69:115–26.
Åkesson
C, Pero RW, Ivars F. C-Med 100®, a hot water extract of Uncaria
tomentosa, prolongs lymphocyte survival in vivo. Phytomedicine.
2003;10:23–33.
Guthrie
OW, Gearhart CA, Fulton S, Fechter LD. Carboxy alkyl esters of
Uncaria tomentosa augment recovery of sensorineural functions
following noise injury. Brain Res. 2011;1407:97–106.
Li
Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. Quercetin,
Inflammation and Immunity. Nutrients. 2016;8:167.
Ganesan
S, Faris AN, Comstock AT, Wang Q, Nanua S, Hershenson MB, et al.
Quercetin inhibits rhinovirus replication in vitro and in vivo.
Antiviral Res. 2012;94:258–71.
Wu
W, Li R, Li X, He J, Jiang S, Liu S, et al. Quercetin as an
Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. Viruses
[Internet]. 2015;8. Available from:
http://dx.doi.org/10.3390/v8010006
Dabbagh-Bazarbachi
H, Clergeaud G, Quesada IM, Ortiz M, O’Sullivan CK,
Fernández-Larrea JB. Zinc ionophore activity of quercetin and
epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. J
Agric Food Chem. 2014;62:8085–93.
US
Burden of Disease Collaborators, Mokdad AH, Ballestros K, Echko M,
Glenn S, Olsen HE, et al. The State of US Health, 1990-2016: Burden
of Diseases, Injuries, and Risk Factors Among US States. JAMA.
2018;319:1444–72.
Ahmad
FB, Anderson RN. The Leading Causes of Death in the US for 2020.
JAMA. 2021;325:1829–30.
Bouamama
S, Bouamama A. Quercetin handles cellular oxidant / antioxidant
systems and mitigates immunosenescence hallmarks in human PBMCs: an
in vitro study [Internet]. bioRxiv. 2022 [cited 2022 Jul 15]. p.
2021.10.23.465570. Available from:
https://www.biorxiv.org/content/10.1101/2021.10.23.465570v2
Heinz
SA, Henson DA, Austin MD, Jin F, Nieman DC. Quercetin
supplementation and upper respiratory tract infection: A randomized
community clinical trial. Pharmacol Res. 2010;62:237–42.
Riva
A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P. Improved Oral
Absorption of Quercetin from Quercetin Phytosome®, a New Delivery
System Based on Food Grade Lecithin. Eur J Drug Metab Pharmacokinet.
2019;44:169–77.
Yousefzadeh
MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, et
al. Fisetin is a senotherapeutic that extends health and lifespan.
EBioMedicine. 2018;36:18–28.
Khan
N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for
health promotion. Antioxid Redox Signal. 2013;19:151–62.
Wang
L, Cao D, Wu H, Jia H, Yang C, Zhang L. Fisetin Prolongs Therapy
Window of Brain Ischemic Stroke Using Tissue Plasminogen Activator:
A Double-Blind Randomized Placebo-Controlled Clinical Trial. Clin
Appl Thromb Hemost. 2019;25:1076029619871359.
Farsad-Naeimi
A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin
supplementation on inflammatory factors and matrix metalloproteinase
enzymes in colorectal cancer patients. Food Funct. 2018;9:2025–31.
Li
Y-R, Li S, Lin C-C. Effect of resveratrol and pterostilbene on aging
and longevity. Biofactors. 2018;44:69–82.
McCormack
D, McFadden D. A review of pterostilbene antioxidant activity and
disease modification. Oxid Med Cell Longev. 2013;2013:575482.
Hougee
S, Faber J, Sanders A, de Jong RB, van den Berg WB, Garssen J, et
al. Selective COX-2 inhibition by a Pterocarpus marsupium extract
characterized by pterostilbene, and its activity in healthy human
volunteers. Planta Med. 2005;71:387–92.
Obrador
E, Salvador-Palmer R, Jihad-Jebbar A, López-Blanch R, Dellinger TH,
Dellinger RW, et al. Pterostilbene in Cancer Therapy. Antioxidants
(Basel) [Internet]. 2021;10. Available from:
http://dx.doi.org/10.3390/antiox10030492
Lin
W-S, Leland JV, Ho C-T, Pan M-H. Occurrence, Bioavailability,
Anti-inflammatory, and Anticancer Effects of Pterostilbene. J Agric
Food Chem. 2020;68:12788–99.
Ma
Z, Zhang X, Xu L, Liu D, Di S, Li W, et al. Pterostilbene:
Mechanisms of its action as oncostatic agent in cell models and in
vivo studies. Pharmacol Res. 2019;145:104265.
Poulose
SM, Thangthaeng N, Miller MG, Shukitt-Hale B. Effects of
pterostilbene and resveratrol on brain and behavior. Neurochem Int.
2015;89:227–33.
Bernstein
PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, et al.
Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical
science underlying carotenoid-based nutritional interventions
against ocular disease. Prog Retin Eye Res. 2016;50:34–66.
Krinsky
NI, Landrum JT, Bone RA. Biologic mechanisms of the protective role
of lutein and zeaxanthin in the eye. Annu Rev Nutr. 2003;23:171–201.
Stahl
W. Macular carotenoids: lutein and zeaxanthin. Dev Ophthalmol.
2005;38:70–88.
Widomska
J, Subczynski WK. Mechanisms enhancing the protective functions of
macular xanthophylls in the retina during oxidative stress. Exp Eye
Res. 2019;178:238–46.
Liu
R, Wang T, Zhang B, Qin L, Wu C, Li Q, et al. Lutein and zeaxanthin
supplementation and association with visual function in age-related
macular degeneration. Invest Ophthalmol Vis Sci. 2014;56:252–8.
Wang
X, Jiang C, Zhang Y, Gong Y, Chen X, Zhang M. Role of lutein
supplementation in the management of age-related macular
degeneration: meta-analysis of randomized controlled trials.
Ophthalmic Res. 2014;52:198–205.
Huang
Y-M, Dou H-L, Huang F-F, Xu X-R, Zou Z-Y, Lin X-M. Effect of
supplemental lutein and zeaxanthin on serum, macular pigmentation,
and visual performance in patients with early age-related macular
degeneration. Biomed Res Int. 2015;2015:564738.
Huang
Y-M, Dou H-L, Huang F-F, Xu X-R, Zou Z-Y, Lu X-R, et al. Changes
following supplementation with lutein and zeaxanthin in retinal
function in eyes with early age-related macular degeneration: a
randomised, double-blind, placebo-controlled trial. Br J Ophthalmol.
2015;99:371–5.
Liu
X-H, Yu R-B, Liu R, Hao Z-X, Han C-C, Zhu Z-H, et al. Association
between lutein and zeaxanthin status and the risk of cataract: a
meta-analysis. Nutrients. 2014;6:452–65.
Ma
L, Hao Z-X, Liu R-R, Yu R-B, Shi Q, Pan J-P. A dose-response
meta-analysis of dietary lutein and zeaxanthin intake in relation to
risk of age-related cataract. Graefes Arch Clin Exp Ophthalmol.
2014;252:63–70.
Craft
NE, Haitema TB, Garnett KM, Fitch KA, Dorey CK. Carotenoid,
tocopherol, and retinol concentrations in elderly human brain. J
Nutr Health Aging. 2004;8:156–62.
Arnal
E, Miranda M, Barcia J, Bosch-Morell F, Romero FJ. Lutein and
docosahexaenoic acid prevent cortex lipid peroxidation in
streptozotocin-induced diabetic rat cerebral cortex. Neuroscience.
2010;166:271–8.
Johnson
EJ, Vishwanathan R, Johnson MA, Hausman DB, Davey A, Scott TM, et
al. Relationship between Serum and Brain Carotenoids, α-Tocopherol,
and Retinol Concentrations and Cognitive Performance in the Oldest
Old from the Georgia Centenarian Study. J Aging Res.
2013;2013:951786.
Nouchi
R, Suiko T, Kimura E, Takenaka H, Murakoshi M, Uchiyama A, et al.
Effects of Lutein and Astaxanthin Intake on the Improvement of
Cognitive Functions among Healthy Adults: A Systematic Review of
Randomized Controlled Trials. Nutrients [Internet]. 2020;12.
Available from: http://dx.doi.org/10.3390/nu12030617
Stringham
NT, Holmes PV, Stringham JM. Effects of macular xanthophyll
supplementation on brain-derived neurotrophic factor,
pro-inflammatory cytokines, and cognitive performance. Physiol
Behav. 2019;211:112650.
Widomska
J, Subczynski WK. Why has Nature Chosen Lutein and Zeaxanthin to
Protect the Retina? J Clin Exp Ophthalmol. 2014;5:326.
Wisniewska
A, Subczynski WK. Accumulation of macular xanthophylls in
unsaturated membrane domains. Free Radic Biol Med. 2006;40:1820–6.
Subczynski
WK, Wisniewska A, Widomska J. Location of macular xanthophylls in
the most vulnerable regions of photoreceptor outer-segment
membranes. Arch Biochem Biophys. 2010;504:61–6.
Subczynski
WK, Wisniewska-Becker A, Widomska J. Can macular xanthophylls
replace cholesterol in formation of the liquid-ordered phase in
lipid-bilayer membranes? Acta Biochim Pol. 2012;59:109–14.
Subczynski
WK, Markowska E, Sielewiesiuk J. Effect of polar carotenoids on the
oxygen diffusion-concentration product in lipid bilayers. An EPR
spin label study. Biochim Biophys Acta. 1991;1068:68–72.
Subczynski
WK, Widomska J, Feix JB. Physical properties of lipid bilayers from
EPR spin labeling and their influence on chemical reactions in a
membrane environment. Free Radic Biol Med. 2009;46:707–18.
Siems
WG, Sommerburg O, van Kuijk FJ. Lycopene and beta-carotene decompose
more rapidly than lutein and zeaxanthin upon exposure to various
pro-oxidants in vitro. Biofactors. 1999;10:105–13.
Socaciu
C, Jessel R, Diehl HA. Carotenoid incorporation into microsomes:
yields, stability and membrane dynamics. Spectrochim Acta A Mol
Biomol Spectrosc. 2000;56:2799–809.
Landrum
JT, Bone RA, Joa H, Kilburn MD, Moore LL, Sprague KE. A one year
study of the macular pigment: the effect of 140 days of a lutein
supplement. Exp Eye Res. 1997;65:57–62.
Madeo
F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and
disease. Science [Internet]. 2018;359. Available from:
http://dx.doi.org/10.1126/science.aan2788
Madeo
F, Carmona-Gutierrez D, Kepp O, Kroemer G. Spermidine delays aging
in humans. Aging . 2018;10:2209–11.
Madeo
F, Bauer MA, Carmona-Gutierrez D, Kroemer G. Spermidine: a
physiological autophagy inducer acting as an anti-aging vitamin in
humans? Autophagy. 2019;15:165–8.
Kiechl
S, Pechlaner R, Willeit P, Notdurfter M, Paulweber B, Willeit K, et
al. Higher spermidine intake is linked to lower mortality: a
prospective population-based study. Am J Clin Nutr. 2018;108:371–80.
Schroeder
S, Hofer SJ, Zimmermann A, Pechlaner R, Dammbrueck C, Pendl T, et
al. Dietary spermidine improves cognitive function. Cell Rep.
2021;35:108985.
Schwarz
C, Horn N, Benson G, Wrachtrup Calzado I, Wurdack K, Pechlaner R, et
al. Spermidine intake is associated with cortical thickness and
hippocampal volume in older adults. Neuroimage. 2020;221:117132.
Wirth
M, Benson G, Schwarz C, Köbe T, Grittner U, Schmitz D, et al. The
effect of spermidine on memory performance in older adults at risk
for dementia: A randomized controlled trial. Cortex. 2018;109:181–8.
Freitag
K, Sterczyk N, Wendlinger S, Obermayer B, Schulz J, Farztdinov V, et
al. Spermidine reduces neuroinflammation and soluble amyloid beta in
an Alzheimer’s disease mouse model. J Neuroinflammation.
2022;19:172.
Xu
T-T, Li H, Dai Z, Lau GK, Li B-Y, Zhu W-L, et al. Spermidine and
spermine delay brain aging by inducing autophagy in SAMP8 mice.
Aging . 2020;12:6401–14.
Cheah
IK, Halliwell B. Ergothioneine, recent developments. Redox Biol.
2021;42:101868.
Kumosani
TA. L-ergothioneine level in red blood cells of healthy human males
in the Western province of Saudi Arabia. Exp Mol Med. 2001;33:20–2.
Kawano
H, Otani M, Takeyama K, Kawai Y, Mayumi T, Hama T. Studies on
ergothioneine. VI. Distribution and fluctuations of ergothioneine in
rats. Chem Pharm Bull . 1982;30:1760–5.
Cheah
IK, Feng L, Tang RMY, Lim KHC, Halliwell B. Ergothioneine levels in
an elderly population decrease with age and incidence of cognitive
decline; a risk factor for neurodegeneration? Biochem Biophys Res
Commun. 2016;478:162–7.
Ames
BN. Low micronutrient intake may accelerate the degenerative
diseases of aging through allocation of scarce micronutrients by
triage. Proc Natl Acad Sci U S A. 2006;103:17589–94.
Ames
BN. Optimal micronutrients delay mitochondrial decay and
age-associated diseases. Mech Ageing Dev. 2010;131:473–9.
Smith
E, Ottosson F, Hellstrand S, Ericson U, Orho-Melander M, Fernandez
C, et al. Ergothioneine is associated with reduced mortality and
decreased risk of cardiovascular disease. Heart. 2020;106:691–7.
Ames
BN. Prolonging healthy aging: Longevity vitamins and proteins. Proc
Natl Acad Sci U S A. 2018;115:10836–44.
Beelman
RB, Kalaras MD, Phillips AT, Richie JP Jr. Is ergothioneine a
“longevity vitamin” limited in the American diet? J Nutr Sci.
2020;9:e52.
Zarse
K, Terao T, Tian J, Iwata N, Ishii N, Ristow M. Low-dose lithium
uptake promotes longevity in humans and metazoans. Eur J Nutr.
2011;50:387–9.
Fajardo
VA, LeBlanc PJ, Fajardo VA. Trace lithium in Texas tap water is
negatively associated with all-cause mortality and premature death.
Appl Physiol Nutr Metab. 2018;43:412–4.
Coutts
F, Palmos AB, Duarte RRR, de Jong S, Lewis CM, Dima D, et al. The
polygenic nature of telomere length and the anti-ageing properties
of lithium. Neuropsychopharmacology. 2019;44:757–65.
Nespital
T, Neuhaus B, Mesaros A, Pahl A, Partridge L. Lithium can mildly
increase health during ageing but not lifespan in mice. Aging Cell.
2021;20:e13479.
Salarda
EM, Zhao NO, Lima CNNC, Fries GR. Mini-review: The anti-aging
effects of lithium in bipolar disorder. Neurosci Lett.
2021;759:136051.
Forlenza
OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF.
Disease-modifying properties of long-term lithium treatment for
amnestic mild cognitive impairment: randomised controlled trial. Br
J Psychiatry. 2011;198:351–6.